
T AMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Information T ec hnology

ARI METSÄHALME

INSTRUCTION SCHEDULER FRAMEW ORK F OR

TRANSPORT TRIGGERED ARCHITECTURES

Master of Science Thesis

Examiners: Prof. T ommi Mikk onen and

Prof. Ja rmo T ak ala

Examiners and subject app roved b y

Depa rtment Council

Ap ril 12 2006

I I

ABSTRA CT

T AMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Info rmation T echnology

Metsähalme, Ari Juhani: Instruction Scheduler F ramew o rk fo r T ransp o rt

T riggered Architectures

Master of Science Thesis: 53 pages

Ap ril 2008

Majo r subject: Soft w a re Engineering

Examiners: Prof. T ommi Mikk onen and Prof. Ja rmo T ak ala

Keyw o rds: transp o rt triggered a rchitecture, instruction scheduler

A custom-tailored application-sp eci�c pro cessor (ASIP) can b e used when no

general-purp ose pro cessor (GPP) in the mark et can ful�ll the requiremen ts set for

an em b edded system. ASIPs are co-designed with the soft w are used in the system,

according to an y p ossible restrictions in p erformance, energy consumption and used

silicon area.

Designing application-sp eci�c pro cessors is usually demanding, time-consuming

and costly . Therefore, the design pro cess should b e automated as m uc h as p ossi-

ble. TT A-Based Co design En vironmen t (TCE) is a to olset that pro vides a semi-

automated design �o w of application-sp eci�c pro cessors helping em b edded system

dev elop ers in �nding the most optimal pro cessor arc hitecture to run the application

at hand. TCE is based on the transp ort triggered arc hitecture (TT A) pro cessor

paradigm. TT A is a highly mo dular and �exible templated pro cessor arc hitecture

w ell suited for customization.

The most imp ortan t and complicated to ol in the TCE to olset is the compiler.

This thesis presen ts a soft w are framew ork written for the TCE compiler bac k-end

that p erforms an imp ortan t part of co de generation for TT A pro cessors: instruction

sc heduling. F or this thesis, the base in terfaces of the framew ork w ere designed and

implemen ted. T w o �pro of-of-concept� instruction sc heduling algorithms w ere also

written to v erify the design and functionalit y of the framew ork.

In addition to the basic concepts concerning retargetable compilers and instruc-

tion sc heduling for instruction-lev el parallel (ILP) pro cessors, the requiremen ts of the

framew ork and the ideas b ehind the most imp ortan t design decisions are describ ed

in this thesis. Finally , the v eri�cation and b enc hmarking results are presen ted.

I I I

TI IVISTELMÄ

T AMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniik an k oulutusohjelma

Metsähalme, Ari Juhani: Instruction Scheduler F ramew o rk fo r T ransp o rt

T riggered Architectures

Diplomit y ö: 53 sivua

Huhtikuu 2008

P ääaine: Ohjelmistotuotanto

T a rk astajat: Prof. T ommi Mikk onen ja p rof. Ja rmo T ak ala

A vainsanat: transp o rt triggered a rchitecture, instruction scheduler

So v ellusk oh taisesti räätälöit y suoritin v oidaan ottaa k ä yttö ön, kun yksik ään mark-

kinoilla olev a yleisk ä yttöinen suoritin ei p yst y tä yttämään sulautetun järjestelmän

laitteistolle asetettuja v aatim uksia. Tällaiset suorittimet suunnitellaan yhdessä niil-

lä a jetta v an ohjelmiston k anssa siten, että mahdolliset suorituskyky-, virrankulutus-

ja pin ta-ala v aatim ukset tä ytt yv ät.

So v ellusk oh taisten suorittimien suunnittelu on usein h yvin v aativ aa, aik aa vie-

v ää ja k allista. Niinpä suurin osa suunnitteluprosessista olisi h yv ä automatisoida.

TT A-Based Co design En vironmen t (TCE) on k ok o elma ohjelmistot y ök aluja, jotk a

yhdessä tarjoa v at sulautettujen järjestelmien suunnittelijoille puoliautomatisoidun

so v ellusk oh taisten suorittimien suunnitteluvuon. Sen tark oitus on auttaa suunnitte-

lijoita lö ytämään juuri kyseiselle so v ellukselle optimoitu suoritinarkkiteh tuuri. TCE

p erustuu suoritinarkkiteh tuuriin nimeltä �transp ort triggered arc hitecture� (TT A).

TT A on mo dulaarinen ja jousta v a arkkiteh tuurimalli, jok a ominaisuuksiensa puoles-

ta so v eltuu h yvin so v ellusk oh taiseen räätälöin tiin.

TCE:n tärk ein ja monim utk aisin t y ök alu on k ään tä jä. Tämä diplomit y ö esittelee

so v ellusk eh yksen, jok a on osa TCE:n TT A-k ään tä jää ja suorittaa yhden k äännös-

t y ön tärk eimmistä osista: k äskyjen sk eduloinnin. Tätä diplomit y ötä v arten teh t y t y ö

k o ostui so v ellusk eh yksen tärk eimpien ra japin to jen suunnittelusta ja toteutuksesta.

Lisäksi t y ötä v arten kirjoitettiin k aksi sk eduloin tialgoritmia, joiden a vulla so v ellus-

k eh yksen suunnittelu ja toiminnallisuus v eri�oitiin.

Tässä diplomit y össä esitellään k äskytason rinnakk aisuutta h y ö dyn tä ville suoritti-

mille tark oitettujen uudelleenk ohdennetta vien k ään tä jien yleiset p eriaatteet. Lisäksi

t y össä kuv ataan so v ellusk eh ykselle asetetut v aatim ukset ja suunnittelut y össä tehdyt

tärk eimmät ohjelmistotekniset ratk aisut. Lopuksi k ä ydään läpi ne menetelmät, joil-

la so v ellusk eh yksen toimivuus v armennettiin, ja esitellään suorituskykymittausten

tulokset.

IV

PREF A CE

The w ork for this M.Sc. thesis w as carried out at the Departmen t of Computer

Systems at T amp ere Univ ersit y of T ec hnology as part of the Flexible Design Metho ds

for DSP Systems (FlexDSP) pro ject. The pro ject in v olv ed dev eloping a pro cessor

co-design soft w are based on transp ort triggered arc hitectures and w as funded b y the

National T ec hnology Agency and Nokia.

I w ould lik e to thank Professor Jarmo T ak ala for taking me as part of this in ter-

esting pro ject and for his impro v emen t ideas for the thesis. Thanks to PhD Andrea

Cilio for sharing his exp ertise in the �eld of TT As and co-op erating in the design of

the instruction sc heduler framew ork. P ekk a Jääsk eläinen and Vladimír Guzma also

deserv e a big w ord of thanks for their e�ort in guiding me through the pro ject. I am

also grateful for the whole TCE team for their con tribution and team w ork. Finally ,

I w ould lik e to thank m y family and esp ecially m y dear F reija for supp orting me all

the w a y .

T amp ere, April 22 2008

Ari Metsähalme

V

CONTENTS

1. In tro duction . 1

2. T ransp ort T riggered Arc hitecture . 3

2.1 Instruction-Lev el P arallelism . 3

2.2 TT A Pro cessor Organization . 4

2.3 Programming a TT A Pro cessor . 5

2.4 TT A-Sp eci�c Optimizations . 7

2.5 TT A-Based Co design En vironmen t . 8

3. Co de Generation for T ransp ort T riggered Arc hitectures 11

3.1 General Concepts . 11

3.2 Structure of a Retargetable ILP Compiler 11

3.3 TCE Compiler Ov erview . 13

3.4 Co de T ransformations . 13

3.4.1 Instruction Selection . 14

3.4.2 Register Allo cation . 14

3.5 Instruction Sc heduling . 15

3.5.1 Sc heduling Scop es . 15

3.5.2 Con trol Flo w Analysis . 16

3.5.3 Data Flo w and Dep endency Analysis 16

3.5.4 List Sc heduling . 17

3.5.5 Resource Assignmen t . 18

4. Requiremen ts and High-Lev el Arc hitecture 20

4.1 Pro duct P ersp ectiv e . 20

4.2 Key User Needs . 21

4.3 Use Cases . 21

4.4 Arc hitectural Ov erview . 22

4.5 Core In terfaces . 24

5. Design and Implemen tation . 25

5.1 Sc heduler F ron t-End . 25

5.1.1 Plug-In Mo dule In terfaces . 25

5.1.2 Loading Plug-Ins . 26

5.1.3 Constructing the Sc heduling Chain 27

5.2 Program Represen tations . 27

5.2.1 Program Ob ject Mo del . 27

5.2.2 Graph-Based Program Represen tations 28

5.3 Sc heduler P ass Hierarc h y . 31

5.4 Resource Mo del . 32

5.5 Resource Manager . 36

VI

5.5.1 Scop e of Resource Managemen t 36

5.5.2 Resource Manager In terface . 37

5.5.3 Brok er Director . 38

5.5.4 Resource Brok ers . 38

5.5.5 Assignmen t Plan . 39

5.5.6 Resource Mo del Construction . 40

5.5.7 Resource Assignmen t . 40

5.6 Customization and Main tenance . 41

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 43

6.1 Pro of-of-Concept Algorithm Implemen tations 43

6.1.1 Sequen tial First-Fit Resource Mapp er 44

6.1.2 Basic Blo c k Sc heduler . 44

6.2 T est Cases and Benc hmarks . 46

7. Conclusions . 50

Bibliograph y . 52

VI I

LIST OF ABBREVIA TIONS

ADF

Arc hitecture De�nition File

ADPCM

A daptiv e Di�eren tial Pulse Co de Mo dulation

ASIP

Application-Sp eci�c Instruction Set Pro cessor

CLI

Command Line In terface

D A G

Directed A cyclic Graph

DIT

Decimation-In-Time

FFT

F ast F ourier T ransform

FU

F unction Unit

GCU

Global Con trol Unit

GPP

General-Purp ose Pro cessor

HDL

Hardw are Description Language

HLL

High-Lev el Language

ILP

Instruction-Lev el P arallelism

IR

In termediate Represen tation

IU

Immediate Unit

JPEG

Join t Photographic Exp erts Group

LL VM

Lo w Lev el Virtual Mac hine

MOM

Mac hine Ob ject Mo del

NOP

No Op eration

POM

Program Ob ject Mo del

RF

Register File

TCE

TT A-Based Co design En vironmen t

TT A

T ransp ort T riggered Arc hitecture

UI

User In terface

XVID

Digital Video Compression F ormat based on DivX (MPEG-4)

1

1. INTRODUCTION

The soft w are and the hardw are of an em b edded system alw a ys ha v e their o wn sp ecial

restrictions and demands. Ev en though the use of a general-purp ose �o�-the-shelf �

pro cessor (GPP) in suc h a system w ould b e economical, it is not alw a ys p ossible.

Requiremen ts concerning p erformance, energy consumption and used silicon area

ma y limit the pro cessor c hoice so strictly that, although the p ossibilities are plen t y ,

no pro cessor curren tly in the mark et is able to ful�ll them.

One solution to the problem w ould b e to design a custom-tailored pro cessor from

scratc h. These pro cessors are called application-sp eci�c instruction set pro cessors

(ASIP). They are co-designed with the soft w are they are supp osed to run, that

is, pro cessor resources and for example the instruction set are optimized for the

application. This allo ws sup erior p erformance when compared to using general-

purp ose pro cessors and giv es the dev elop er of the em b edded system the p ossibilit y

to ensure that the pro cessor meets all the set requiremen ts. Ho w ev er, the design

pro cess of suc h a pro cessor is demanding and ma y also b e v ery costly � unless a

to olset that automates most of the pro cess could b e used.

TT A Co design En vironmen t (TCE) curren tly dev elop ed at T amp ere Univ ersit y

of T ec hnology (TUT) is one suc h to olset. It assists in designing application-sp eci�c

pro cessors b y o�ering semi-automatic to ols for �nding the optimal pro cessor arc hi-

tecture for the application at hand. The source co de is compiled for eac h candidate

arc hitecture and sim ulated to v erify co de and pro cessor correctness and to pro vide

the dev elop er with p erformance statistics. Other imp ortan t �gures suc h as energy

consumption and pro cessor area are also estimated. This pro cess of �nding the

optimal pro cessor arc hitecture for the giv en application is called design space explo-

ration.

The TCE to olset is based on the transp ort triggered arc hitecture (TT A) pro cessor

paradigm. It is a �exible and mo dular templated pro cessor arc hitecture that consists

of easily customizable set of pro cessor resources and th us is w ell suited for this

purp ose. The arc hitecture is k ept simple b y mo ving most complexit y from hardw are

to soft w are. This mak es an e�cien t compiler a necessit y and places man y c hallenges

on designing one.

Instruction sc heduling is an imp ortan t part of compiling e�cien t co de for a TT A

pro cessor. This thesis presen ts an instruction sc heduler framew ork designed and

1. In tro duction 2

implemen ted for the TCE compiler bac k-end. It helps in designing and testing

instruction sc heduling and other co de transformation and optimization algorithms

for TT A pro cessors. It can also b e used for compiling for a �xed TT A target and

as part of automated design space exploration. The purp ose of this thesis is to

describ e the main design and implemen tation decisions concerning the instruction

sc heduler framew ork and to pro vide the users with enough details to enable them

to use, extend and main tain the framew ork.

The structure of this thesis is as follo ws: Chapter 2 in tro duces the TT A arc hi-

tecture and describ es ho w a TT A pro cessor is programmed. The TCE to olset is

also brie�y in tro duced. Chapter 3 giv es an o v erview of compilers and presen ts some

general concepts and issues concerning compiling for a TT A pro cessor. Chapter 4

summarizes the main requiremen ts set for the instruction sc heduler framew ork and

Chapter 5 presen ts the ideas b ehind the design decisions and ho w the framew ork

w as implemen ted. Chapter 6 describ es ho w the framew ork w as tested and lists

the results of the p erformance b enc hmarks run using t w o implemen ted algorithms.

Chapter 7 concludes the thesis.

3

2. TRANSPORT TRIGGERED

ARCHITECTURE

The transp ort triggered arc hitecture is a �exibly customizable templated pro cessor

arc hitecture. It is esp ecially suitable for running sp ecialized applications, where high

p erformance but lo w pro duction costs, pro cessor area usage and p o w er consumption

are required.

A TT A pro cessor is usually tailored exclusiv ely for the application in question,

giving the pro cessor designers the p ossibilit y to optimize pro cessor resources de-

p ending on the p erformance and cost requiremen ts they ha v e set for their system.

The TT A has b een dev elop ed with easy customization in mind. It is a mo dular

arc hitecture template that consists of a set of a few basic building blo c ks, suc h as

function units, register �les and transp ort buses. By v arying these building blo c ks,

the designer can come up with a con�guration that b est ful�lls the set requiremen ts.

Ho w ev er, despite ha ving a �exible pro cessor arc hitecture template at hand, de-

signing application-sp eci�c pro cessors man ually is still a rather demanding and p os-

sibly v ery exp ensiv e task. Em b edded system designers need to consider whether it

w ould b e more feasible to pic k an o�-the-shelf pro cessor instead. The TT A-Based

Co design En vironmen t dev elop ed in T amp ere Univ ersit y of T ec hnology is a to olset

that automates the most time-consuming and error-prone parts of the TT A pro ces-

sor design pro cess, and th us helps in reducing design costs.

This c hapter presen ts the organization of a TT A pro cessor and describ es ho w it

is programmed. Finally , the TCE to olset is in tro duced.

2.1 Instruction-Level P a rallelism

Instruction-lev el parallelism (ILP) de�nes ho w man y op erations in a program can

b e executed in parallel. An ILP arc hitecture on the other hand refers to the fam-

ily of pro cessor arc hitectures that are able to execute op erations in parallel. By

duplicating pro cessor resources or for example pip elining function units these pro-

cessors pro vide the programmer or the compiler the p ossibilit y enhance application

p erformance.

Ho w m uc h ILP is exploitable dep ends not only on the n um b er of sim ultaneously

accessable pro cessor resources, but also on target application seman tics. Con trol and

data �o w in the program create dep endencies that need to b e resp ected to mak e the

2. T ransp ort T riggered Arc hitecture 4

Figure 2.1: TT A pro cessor high-lev el organization.

program execute correctly . These dep endencies limit the n um b er of op erations that

are executable in parallel. V arious compiler tec hniques are used to increase p ossible

ILP in programs. [1]

The TT A arc hitecture presen ted in the follo wing is an example of an ILP arc hi-

tecture. By duplicating its basic building blo c ks the designer can pro vide as m uc h

ILP for the target application as required.

2.2 TT A Pro cesso r Organization

The basic building blo c ks of a TT A pro cessor are function units (FU), register �les

(RF), immediates units (IU) and the in terconnection net w ork (IC). Also, a sp ecial

function unit, called the global con trol unit (GCU) is used to fetc h and deco de in-

structions from instruction memory and generate signals that con trol the pro cessor.

A load/store unit (LSU) is a function unit sp ecialized in memory op erations. The

high-lev el TT A arc hitecture is illustrated in Figure 2.1. Figure 2.2 represen ts a sim-

ple TT A pro cessor with t w o function units, one register �le, t w o transp ort buses

and a GCU.

Eac h function unit can supp ort one or more op erations, ranging from simple

addition and subtraction op erations to complex sp ecialized op erations. In theory , a

function unit could ev en wrap inside another TT A co-pro cessor.

Op erands for op erations executed b y function units are transferred through p orts.

The n um b er of input and output p orts in an FU dep ends on the op erations supp orted

2. T ransp ort T riggered Arc hitecture 5

Figure 2.2: A simple TT A pro cessor template.

b y the unit. These p orts are b ound to the op erands of eac h supp orted op eration.

Memory op erations are also carried out b y function units. Eac h TT A pro cessor

con tains at least one so called load-store unit, whic h is able to read and write data

memory .

T ransp ort buses, so c k ets, p orts and connections b et w een them form the in tercon-

nection net w ork. A ccording to the con trol signals from the GCU, data is transp orted

b et w een function units and register �les through those connections. The n um b er

of transp ort buses in the pro cessor ultimately limits the n um b er of concurren t data

transp orts p er clo c k cycle. Other a v ailable resources and data dep endencies further

limit op eration parallelization p ossibilities. T emp orary run-time data is stored in

the registers of register �les. Immediate units con tain sp ecial registers for storing

long immediates.

F or more details on the TT A arc hitecture, see [2].

2.3 Programming a TT A Pro cesso r

Instructions in a TT A program de�ne data transp orts (later referred to as mo v es)

instead of op erations. Op erations ma y or ma y not b e executed as a side-e�ect of

these data transp orts. The data transp orts are explicitly de�ned b y the programmer,

unlik e in a traditional arc hitecture, where the hardw are activ ates the required data

transp orts dep ending on the executed op erations.

In the assem bly language of a traditional general-purp ose pro cessor, the execution

of an addition op eration, whic h sums registers r1 and r2 and writes the result to

register r3, could b e programmed lik e this:

add r3, r1, r2;

2. T ransp ort T riggered Arc hitecture 6

T o execute the same op eration on a TT A, the programmer w ould need to de�ne

three data transp orts:

r1 -> add.o1;

r2 -> add.trigger;

add.o3 -> r3;

The t w o input op erands of the addition op eration are transp orted through the

IC from the registers to the input p orts of the function unit that implemen ts the

op eration, add.o1 and add.trigger . The input p ort that is b ound to the second

op erand of the op eration is called a trigger p ort. A data transp ort to this op erand

sets the op co de and triggers the execution of the op eration. This b eha vior explains

the name �transp ort triggered arc hitecture�.

After the op eration latency , the result is a v ailable at the output p ort add.o3 ,

ready to b e transp orted to register r3. In the example, the result is ready immedi-

ately at the next cycle from triggering the op eration. This migh t not b e the case

esp ecially in case of complex op erations or memory accesses. Since a TT A do es not

automatically recognize stuctural or con trol hazards and stall the pro cessor un til

the con�ict resolv es, the programmer m ust tak e op eration latencies in to accoun t.

The co de in the previous example is unsc heduled TT A co de. A t this p oin t, it is

not y et mapp ed to an y particular arc hitecture. In this t yp e of TT A co de, data mo v es

are de�ned one after another, one mo v e p er instruction. When this kind of TT A

co de is compiled for a concrete TT A arc hitecture, the instructions are �lled with as

man y mo v es as p ossible, that is, the co de is sc heduled. In addition, the resources

used to carry out the data transp orts are assigned. Unsc heduled TT A co de has a

few restrictions whic h ensure it is as arc hitecture-indep enden t as p ossible. These

restrictions are describ ed in detail in [3].

Since the t w o input op erand mo v es in the example are indep enden t of eac h other,

if at least t w o buses and required connections are a v ailable, these mo v es could b e

carried out in parallel. In that case, the assem bly co de w ould lo ok lik e the follo wing:

rf.1 -> alu.o1; rf.2 -> alu.trigger.add;

alu.o3 -> rf.3;

Here the resources are also mapp ed to the arc hitecture at hand. Register �le �rf �

is used to store the v alues. In this notation, rf.1 refers to its register at index 1 .

The function unit �alu� is used to execute the op eration. alu.trigger.add means

that the op co de for an addition op eration is set and the op eration is triggered b y

this mo v e.

Conditional execution in TT As is implemen ted using guar ds . Eac h mo v e in a

TT A instruction ma y ha v e a guard that refers to a register, whic h usually is a 1-bit

2. T ransp ort T riggered Arc hitecture 7

b o olean register, or to a result p ort of a function unit. In case the v alue in the

register or at the FU p ort ev aluates to zero (false), the mo v e is not b e carried out.

2.4 TT A-Sp eci�c Optimizations

The TT A arc hitecture allo ws a set of optimizations not exploitable on other tradi-

tional arc hitectures. An example of these is softwar e byp assing , whic h is an optimiza-

tion normally done at run-time b y the hardw are. In TT A's though, this opimization

is done b y the programmer (or usually b y the compiler).

In soft w are b ypassing, the results of computations are transferred directly to

the op erands of data dep enden t op erations instead of transferring them through

registers. This reduces the n um b er of reads and writes to register �les and reuse of

registers, th us increasing ILP and reducing the cycle coun t of the program. [4]

As an example, let's lo ok at the follo wing piece of co de that con tains t w o subse-

quen t data dep enden t op erations:

rf.1 -> alu1.o1; rf.2 -> alu1.trigger.add;

alu1.3 -> rf.3;

rf.3 -> alu2.o1; rf.4 -> alu2.trigger.sub;

alu2.3 -> rf.5;

In this soft w are b ypassing example, the result of the �rst addition op eration is

directly transferred to the op erand of the subtraction op eration as follo ws:

rf.1 -> alu1.o1; rf.2 -> alu1.trigger.add;

alu1.3 -> alu2.o1; rf.4 -> alu2.trigger.sub;

alu2.3 -> rf.5;

Since the de�ning mo v e alu1.3 -> rf.3 is not required an ymore, it is eliminated

b y de ad-r esult elimination optimization. By applying b ypassing, the cycle coun t is

reduced as w ell as an unnecessary data transp ort and an RF access is eliminated.

Another example of a TT A-sp eci�c optimization is op er and sharing , whic h means

that if t w o op erations ha v e a common op erand, the programmer can assign b oth

op erations to b e executed on the same FU. The second op erand mo v e to the FU

can b e then eliminated, thereb y sa ving one data transp ort and an RF read. [5]

In the follo wing piece of co de, the subsequen t addition and subtraction op erations

ha v e a common op erand rf.1 :

rf.1 -> alu1.o1; rf.2 -> alu1.trigger.add;

alu1.3 -> rf.3;

rf.1 -> alu2.o1; rf.4 -> alu2.trigger.sub;

alu2.3 -> rf.5;

2. T ransp ort T riggered Arc hitecture 8

If b oth the op erations are executed on the same FU, the second op erand mo v e

rf.1 -> alu2.o1 can b e eliminated, b ecause it is already presen t in the op erand

register of the FU alu1 . The optimized co de after applying op erand sharing sa v es

a mo v e and an RF access:

rf.1 -> alu1.o1; rf.2 -> alu1.trigger.add;

alu1.3 -> rf.3; rf.4 -> alu1.trigger.sub;

alu1.3 -> rf.5;

2.5 TT A-Based Co design Environment

The �rst to olset dev elop ed for designing TT A pro cessors w as MO VE framew ork.

The MO VE pro ject started at Delft Univ ersit y in the Netherlands in the early 1990's.

[5] Since 2002, dev elopmen t and main tenance con tin ued at T amp ere Univ ersit y of

T ec hnology in Finland.

The main purp ose of the to olset w as to allo w researc hers to exp erimen t new ideas

and extend the framew ork with new algorithms easily . In the long run, due to the

c hosen soft w are arc hitecture in the MO VE framew ork, it b ecame v ery di�cult if not

imp ossible. The aim of the pro ject started at TUT w as to completely redesign the

MO VE framew ork, fo cusing on extendabilit y and �exibilit y . The new to olset w as

named TT A-Based Co design En vironmen t (TCE).

The initial input to the TCE to olset is the source application written in a high-

lev el programming language (HLL). The fron t-end compiler transforms the original

source to b yteco de that is then used as an input to the follo wing parts in the design

�o w. Originally , the TCE fron t-end w as based on GCC v ersion 2.7.0 [6]. Curren tly ,

an LL VM-based (Lo w Lev el Virtual Mac hine) implemen tation is used. A detailed

description on the LL VM framew ork can b e found from [7].

The rest of the TCE design �o w can b e divided in the follo wing main phases:

pro cessor design space exploration, co de generation and analysis, and program image

and pro cessor generation [8]. The design �o w is illustrated in Figure 2.3.

Pro cessor design space exploration. The design space exploration is a pro cess

of �nding an optimized pro cessor for running the application at hand, considering the

set requiremen ts and restrictions. This pro cess can b e automated using the Design

Space Explorer to ol in the TCE to olset. It starts b y mo difying the resources of an

initial pro cessor con�guration and ev aluating the e�ects of the mo di�cations. The

ev aluation pro cess consists of estimating pro cessor area usage, energy consumption

and p erformance for eac h con�guration. Finally , the exploration pro duces a set of

candidate arc hitectures that ful�ll the giv en p erformance and cost requiremen ts.

2. T ransp ort T riggered Arc hitecture 9

Source application

Processor design space
exploration

Code generation and
analysis

Program image and
processor generation

Performance and cost
requirements

Program image executable on
the chosen architecture

HDL description of the
chosen architecture

Figure 2.3: TCE design �o w.

In man ual design space exploration, the user is allo w ed to fully customize the

pro cessor arc hitecture. Eac h custom con�guration is ev aluated similarly to the au-

tomated exploration. A ccording to the ev aluation data, the user can mo dify the

arc hitecture as necessary and rep eat the pro cess un til the optimal arc hitecture is

found.

Co de generation and analysis. In the co de generation and analysis phase, the

source co de is sc heduled and optimized for the giv en arc hitecture and then analyzed

b y sim ulation. The sim ulator pro vides data suc h as pro cessor utilization and cycle

coun ts, whic h are necessary for energy consumption and p erformance estimates. The

compiler maps the input program to parallel co de that utilizes the resources of the

giv en pro cessor arc hitecture as e�cien tly as p ossible. This is de�nitely the most

demanding task in the TCE design �o w, and therefore TCE pro vides researc hers

a framew ork for dev eloping and exp erimen ting with di�eren t sc heduling algorithms

and optimizations.

The detailed requiremen ts of the instruction sc heduler framew ork are presen ted

2. T ransp ort T riggered Arc hitecture 10

in Chapter 4, and the ideas b ehind the design and implemen tation decisions are

discussed in Chapter 5.

Program image and pro cessor generation. In the �nal phase of the TCE

design �o w, a hardw are description language (HDL) description of the c hosen ar-

c hitecture is generated using the Pro cessor Generator to ol in the TCE to olset. A d-

ditionally , the executable bit image of the sc heduled program is generated with the

Program Image Generator to ol. A detailed presen tation of b oth these to ols can b e

found in [9].

11

3. CODE GENERA TION F OR TRANSPORT

TRIGGERED ARCHITECTURES

This c hapter discusses the most imp ortan t concepts concerning instruction sc hedul-

ing and co de generation with main fo cus on transp ort triggered arc hitectures.

3.1 General Concepts

Generally , a compiler is a program that translates a program written in some lan-

guage, the sour c e language, to another language, the tar get language, while k eeping

program seman tics equiv alen t. The source and target languages ma y b e basically

an ything. Usually though, an HLL represen tation of the program is translated to

the mac hine language of a computer. [10]

In TCE, the compiler is used to translate a program written in a high-lev el

language in to executable co de for the TT A at hand. Esp ecially for TT A-based

pro cessor arc hitectures, an e�cien t compiler is an essen tial to ol. That is b ecause of

the basic concept of the TT A: mo ving complexit y from hardw are to soft w are.

Compiling for a TT A in v olv es assigning pro cessor resources to ev ery data trans-

p ort while a v oiding an y con�icts in resource usage. A t the same time, all p ossible

ILP should b e exploited to mak e the co de execute as e�cien tly as p ossible. P articu-

larly with larger applications, this w ould b e a v ery time consuming and demanding

task to do man ually . That is wh y the programmer is b etter o� lea ving this task

to an automated to ol. The e�ort of writing a go o d TT A compiler pa ys o� also

b ecause of its retargetabilit y: c hanges in the arc hitecture or the instruction set of

the pro cessor do es not require compiler rewriting.

3.2 Structure of a Reta rgetable ILP Compiler

Compilers are t ypically divided in three parts: a fron t-end that is HLL-sp eci�c, a

middle-end that p erforms mac hine-indep enden t optimizations on the output of the

fron t-end, and a target arc hitecture dep enden t bac k-end. Eac h part of the compiler

lo w ers the lev el of abstraction in the source co de and �nally comes up with a program

represen tation that corresp onds directly to the mac hine co de of the target pro cessor.

[11]

3. Co de Generation for T ransp ort T riggered Arc hitectures 12

Front-endApplication in HLL

Intermediate representation

Middle-end

Optimized intermediate
representation

Machine-independent
simulation

Back-endArchitecture description

Optimized parallel code

Machine-specific
simulation or native

execution

Profiling data

Figure 3.1: Data �o w in a retargetable ILP compiler.

F ron t-end. The fron t-end translates the source application co de written in HLL

in to an in termediate program represen tation (IR) not compiled for an y particular

arc hitecture. Compilers usually ha v e m ultiple fron t-ends for di�eren t programming

languages.

A sim ulator can b e used to v erify the correctness of the co de and generate pro�ling

data to b e used in the next phase of the compilation. This pro�ling data ma y con tain

for example execution coun ts for eac h basic blo c k and eac h con trol �o w edge.

The IR and all p ossible auxiliary data are the inputs for the compiler middle-end,

or to the bac k-end if no optimizations are p erformed on the IR. The bac k-end then

also requires the arc hitecture description.

The data �o w in a t ypical retargetable ILP compiler is illustrated in Figure 3.1.

Middle-end. The middle-end p erforms high-lev el language- and arc hitecture-

indep enden t optimizations on the in termediate program represen tation pro duced

b y the fron t-end. These optimizations ma y include for example dead-co de elimina-

tion, whic h remo v es unnecessary instructions, or function inlining and lo op unrolling,

3. Co de Generation for T ransp ort T riggered Arc hitectures 13

whic h aim at increasing exploitable ILP . [4]

Bac k-end. The compiler bac k-end reads the mac hine-indep enden t IR, the arc hi-

tectural description and p ossible pro�ling information, then translates the co de in to

parallel co de for the target arc hitecture.

The bac k-end p erforms v arious analyses on the program, suc h as con trol �o w

and data �o w analysis and memory reference disam biguation analysis. Using this

information, it p erforms sev eral optimizations that require sp eci�c kno wledge of the

target implemen tation. These optimizations include register allo cation and instruc-

tion sc heduling, whic h are imp ortan t parts of generating e�cien t co de executable

on the target pro cessor. [4]

3.3 TCE Compiler Overview

The TCE compiler follo ws the basic structure of a retargetable ILP compiler pre-

sen ted in the previous section. It is illustrated in Figure 3.2. The fron t-end of the

TCE compiler is the LL VM C fron t-end. It transforms an application written in

C to LL VM b yteco de, whic h is an arc hitecture-indep enden t in termediate program

represen tation used in the LL VM framew ork. [7]

The IR is then optimized in the middle-end and ma y b e sim ulated with the LLI

for v eri�cation. LLI is a to ol in the LL VM framew ork that executes the b yteco de

using an in terpreter or a just-in-time compiler. [7]

The bac k-end of the TCE compiler requires the arc hitectural description of the

target pro cessor (Arc hitecture De�nition File or ADF, describ ed in [12]). Mac hine-

dep enden t co de transformations, suc h as instruction selection and register allo cation

are p erformed on the input b yteco de in the LL VM bac k-end.

Then the optimized co de, that no w con tains b oth mac hine-indep enden t and de-

p enden t information, is passed to the TCE bac k-end, that p erforms instruction

sc heduling, applies TT A-sp eci�c optimizations and �nalizes the co de generation pro-

cess. The instruction sc heduler framew ork, whic h is the main topic in this thesis is

part of the TCE-bac k end. Instruction sc heduling, together with resource assignmen t

is its resp onsibilit y .

3.4 Co de T ransfo rmations

There are a n um b er of co de transformations that can or need to b e run on the co de

b efore, during or after instruction sc heduling. T w o mandatory transformations,

instruction sele ction and r e gister al lo c ation , are presen ted in the follo wing sections.

3. Co de Generation for T ransp ort T riggered Arc hitectures 14

Application in C

Front-end:
LLVM-GCC LLVM bytecode

LLVM:opt

LLI

LLVM:back-end TCE:back-end

ADF ParallelTTA code

Back-endFront-end

Middle-end

Figure 3.2: Structure and data �o w in the TCE compiler.

3.4.1 Instruction Selection

Instruction selection is the pro cess of replacing the instructions de�ned in the in-

termediate program represen tation b y instructions from the instruction set of the

target arc hitecture. [11]

Instruction selection is an imp ortan t co de transformation that ma y ha v e a consid-

erable e�ect on program execution time, esp ecially in a retargetable compiler suc h

as a TT A compiler, where the instruction sets of the p ossible target arc hitectures

ma y v ary signi�can tly . Instruction selection is also crucial in the sense that it m ust

b e done in order to mak e the co de executable on the target.

In the TCE compiler, the instruction selection is done b y the LL VM bac k-end

b efore instruction sc heduling.

3.4.2 Register Allo cation

Register allo cation means assigning v ariables in the program to registers in the target

pro cessor. A traditional metho d of register allo cation in v olv es creating and coloring

an interfer enc e gr aph that sho ws whic h v ariables in the program are liv e at the same

time.

A fundamen tal problem concerning register allo cation is the phase-ordering prob-

lem: whether to p erform register allo cation b efore or after instruction sc heduling,

or to do them at the same time. A register allo cator tries to minimize the need

to spill v ariables to memory and tends to reuse registers, th us creating sc heduling

constrain ts (data dep endencies) that the instruction sc heduler m ust cop e with. An

3. Co de Generation for T ransp ort T riggered Arc hitectures 15

instruction sc heduler on the other hand tries to exploit all a v ailable ILP and w ould

b ene�t from the sc heduling freedom caused b y a large n um b er of used registers. In

consequence, these t w o imp ortan t optimizations ha v e rather con�icting goals. [13]

The LL VM bac k end in the TCE compiler implemen ts a line ar-sc an register allo-

cator, that attempts to allo cate registers in linear time prop ortional to the n um b er of

instructions in the co de. The register allo cation is done b efore instruction sc hedul-

ing, that is, b efore the co de is handed o v er to the TCE bac k-end. This approac h

prioritizes e�cien t register use o v er exploiting ILP , whic h w orks w ell for mac hines

with few a v ailable registers. [11]

3.5 Instruction Scheduling

Instruction sc heduling is a fundamen tal phase in co de generation. In ILP compilers

for statically sc heduled arc hitectures lik e TT A, the instruction sc heduler iden ti�es

op erations that can b e executed in parallel and reorders and pac ks them in to as

small n um b er of instructions as p ossible. This is done k eeping in mind that the

seman tics of the program m ust remain in tact and that the op erations executed in

parallel should not use the same hardw are resources.

The compiler also needs to tak e care of op eration latencies, b ecause a statically

sc heduled pro cessor is not automatically stalled in case of a con�ict caused for

example b y reading a result b efore it is ready . In addition to a v oiding con�icts, the

compiler should tak e the latency slots in use b y �lling them with other indep enden t

op erations.

In man y dynamically sc heduled arc hitectures, the pro cessor pro vides hardw are

supp ort for stalling the pro cessor when a structural or con trol hazard o ccurs. F or

these arc hitectures, instruction sc heduling is only an optimization that aims at min-

imizing stall cycles. [14]

A TT A instruction sc heduler sc hedules data transp orts, or mo v es, instead of

op erations. Mo v es that b elong to the same op eration in tro duce another sc heduling

constrain t that needs to b e resp ected. That's wh y mo v es of the same op eration are

usually sc heduled in one shot. [5]

In the TCE compiler, the instruction sc heduling is p erformed b y the TCE bac k-

end.

3.5.1 Scheduling Scop es

Sc hedulers are usually categorized b y the scop e of the program or region they handle.

A b asic blo ck is a sequence of consecutiv e instructions that has no join p oin ts in the

middle and con tains no branc hing except at the end of the sequence [10]. A lo c al

sche duler w orks on the scop e of these basic blo c ks. An y sc heduling decisions made

3. Co de Generation for T ransp ort T riggered Arc hitectures 16

entry

B1

B2 B3

t f

B5

t

B4

f

exit

Figure 3.3: An example con trol �o w graph.

in a basic blo c k has no e�ect on the sc heduling of other basic blo c ks.

Basic blo c ks are usually not more than a few op erations in size, so the exploitable

ILP is often limited. Therefore, more adv anced sc hedulers w ork on scop es that cross

basic blo c k b oundaries. These are called glob al sche dulers . Global sc hedulers are

able to mo v e op erations b et w een basic blo c ks that b elong to the sc heduling scop e.

[5]

3.5.2 Control Flo w Analysis

T o get a global p ersp ectiv e on the program seman tics, w e need to analyze ho w the

con trol �o ws b et w een the basic blo c ks. This often in v olv es constructing a con trol

�o w graph (CF G). Eac h no de in the CF G is a basic blo c k and edges represen t

c hanges in the �o w of con trol. These c hanges are due to conditional execution or

jumps.

Figure 3.3 depicts a simple CF G with 5 basic blo c ks and additional en try and

exit no des. The edges t and f represen t true and false conditions, resp ectiv ely .

The branc h selected dep ends on ho w the condition at the end of the basic blo c k

ev aluates. Blank edges are unconditional jumps or fall-throughs from previous basic

blo c ks. Refer to [15] for more details and algorithms for constructing CF G's.

3.5.3 Data Flo w and Dep endency Analysis

Data �o w analysis pro vides information ab out ho w a part of a program (suc h as

a basic blo c k or a pro cedure) manipulates data [15]. It consists of computation of

3. Co de Generation for T ransp ort T riggered Arc hitectures 17

liv e-ranges of v ariables and �nding v ariable de�nition-use c hains. This information

can b e exploited when allo cating registers. [4]

Data dep endency analysis is a to ol of vital imp ortance to the instruction sc hed-

uler. It determines the ordering constrain ts b et w een op erations whic h need to b e

resp ected during sc heduling for the co de to execute correctly . [15] These relations

can b e represen ted b y a data dep endency graph (DDG). The instruction sc heduler

uses the DDG when deciding whic h op erations are executable in parallel without

breaking the dep endency constrain ts [5].

F or example, let's lo ok at the follo wing piece of pseudo co de:

S1. x := y + z

S2. x := x + 1

S3. y := a

S4. a := x

S5. y := 0

It in tro duces data dep endencies that are represen ted in the DDG in Figure 3.4.

The solid line represen ts a �ow dep endency , whic h means that the v alue de�ned

b y a statemen t is used b y the dep enden t statemen t. The dashed line represen ts an

anti-dep endency , whic h means that the v alue de�ned b y a statemen t is rede�ned b y

the dep enden t statemen t. Another t yp e of dep endency is output dep endency , whic h

is similar to an an ti-dep endency . It o ccurs when reordering statemen ts w ould a�ect

the �nal v alue of a v ariable. This is illustrated in the example DDG b y the coarsely

dashed line b et w een statemen ts S3 and S5 .

Flo w dep endencies are also kno wn as true dep endencies, b ecause they cannot b e

eliminated. On the con trary , output and an ti-dep endencies are called false dep en-

dencies, b ecause they are caused b y v ariable naming. [16]

All these dep endencies reduce a v ailable ILP . If register assignmen t is done b efore

instruction sc heduling, it can b e used to reduce these dep endencies and th us ha v e a

notable e�ect on the parallelization of the program.

Data �o w and dep endency analysis algorithms can b e found in [15].

3.5.4 List Scheduling

The most p opular tec hnique used for instruction sc heduling is list sche duling . Its

p opularit y is based on its rather go o d e�ectiv eness com bined with reasonable com-

pile time. A list sc heduler rep eatedly assings op erations to cycles or cycles to op er-

ations without an y bac ktrac king or lo ok ahead heuristics. An instruction-based list

sc heduler �lls instructions cycle b y cycle, trying to place as man y op erations in the

curren t instruction as p ossible. An op eration-based list sc heduler rep eatedly selects

3. Co de Generation for T ransp ort T riggered Arc hitectures 18

S1

S2 S3

S4 S5

Figure 3.4: An example data dep endency graph.

op erations ready for sc heduling and �nds a suitable instruction for them. TCE uses

an op eration-based list sc heduler, in whic h w e concen trate in the follo wing.

An op eration-based list sc heduler w orks on a DDG, whic h is a directed acyclic

graph (D A G) whic h prev en ts p ossible lo c k-ups. In top-do wn approac h, the DDG is

w alk ed through in top ological order so that no op eration is sc heduled b efore all its

predecessors ha v e b een sc heduled. In b ottom-up approac h, an op eration is sc heduled

after all its successors ha v e b een sc heduled. An op eration ready for sc heduling is

said to b e a mem b er of the r e ady set . An y op eration from this set can b e selected

for sc heduling next. The selection is prioritized b y a priorit y function, that ma y for

example fa v or candidates that are on the longest p ath on the DDG. [17]

3.5.5 Resource Assignment

Duplication of resources and pip elining in function units pro vides parallelism at the

lev el of pro cessor resources. On the other hand, if resources are scarce, pro ducing an

e�ectiv e sc hedule for a program b ecomes c hallenging for the instruction sc heduler. In

addition to resp ecting program seman tics, the pro duced co de should not con tain an y

resource usage con�icts. Because a TT A compiler is retargetable, and the amoun t

and qualit y of resources can v ary , the resource assignmen t pro cess b ecomes ev en

more complex. [5]

If the registers in register �les ha v e already b een assigned b efore instruction

sc heduling, the sc heduler m ust still assign op erations to function units, mo v es to

transp ort buses and so c k ets and decide whether an immediate is enco ded in the

immediate �eld of the instruction or in the source �eld of a mo v e. [4]

It is an imp ortan t decision when and in whic h order eac h pro cessor resource

is assigned. Resource assignmen ts usually ha v e side-e�ects and eac h assignmen t

decision a�ects follo wing assignmen ts. Eac h resource t yp e also requires di�eren t

heuristics for selecting a resource from a group of candidates. Whether for example

a �rst-�t or a mor e sp e cialize d r esour c e �rst principle should b e used dep ends on

3. Co de Generation for T ransp ort T riggered Arc hitectures 19

the case at hand.

The Chapters 4 and 5 describ e ho w the instruction sc heduler framew ork in the

TCE compiler bac k-end helps in solving problems concerning instruction sc heduling

as w ell as resource assignmen t.

20

4. REQUIREMENTS AND HIGH-LEVEL

ARCHITECTURE

This c hapter presen ts the main requiremen ts set for the instruction sc heduler frame-

w ork completed with the most imp ortan t use cases, and giv es a brief arc hitectural

o v erview.

4.1 Pro duct P ersp ective

The instruction sc heduler framew ork is a fundamen tal part of the TCE compiler

bac k-end. This is b ecause instruction sc heduling pla ys a crucial role in compiling

an application for a TT A, esp ecially in making it run as e�cien tly as p ossible. The

capabilities of a p o w erful TT A pro cessor cannot b e fully utilized without e�ectiv e in-

struction sc heduling. The framew ork is used to implemen t the instruction sc heduler

and to p erform an y supp orting pre- or p ost-sc heduling co de analyses or transforma-

tions. It can b e used as a stand-alone to ol or as part of another application.

The main inputs of the framew ork are the unsc heduled TT A co de usually gener-

ated b y the TCE fron t-end compiler, the description of the target arc hitecture and

optionally some supp orting auxiliary data suc h as program pro�ling information.

The framew ork applies user-de�ned optimization and co de transformation passes

on the input program. These passes and their parameters are giv en in a sc heduler

con�guration �le. F rom the giv en inputs the framew ork pro duces as output the

pro cessed target program mapp ed to the giv en target arc hitecture and optionally

some auxiliary data. The inputs and outputs of the framew ork are illustrated in

Figure 4.1.

The framew ork pro vides means for writing and con�guring the sc heduler passes

men tioned ab o v e and easily plugging them in without time-consuming recompilation

of the whole framew ork. This is one of the most imp ortan t requiremen ts for the

framew ork. It should help users in exp erimen ting with di�eren t optimizations and

parameters to �nd the most suitable com bination for their needs and ev aluate their

e�ects on target application p erformance. It should also help the users in trying out

di�eren t sc heduling algorithms to pro duce the most e�ectiv e sc hedule for a giv en

target arc hitecture.

The most imp ortan t use cases are presen ted in the follo wing sections. Refer to

[18] for more details on the sc heduler framew ork and TCE instruction sc heduler

4. Requiremen ts and High-Lev el Arc hitecture 21

Instruction Scheduler Framework

Configuration
Unscheduled
source code

ADF

Scheduler pass
plug-ins

Parallel TTA
code

Figure 4.1: Instruction sc heduler framew ork inputs and outputs.

requiremen ts.

4.2 Key User Needs

The k ey needs of the user of the instruction sc heduler framew ork can b e brie�y listed

as follo ws:

1. Map unsc heduled TT A co de to parallel TT A co de for a giv en target arc hitec-

ture, exploiting a v ailable instruction-lev el parallelism as w ell as p ossible.

2. Map partially pro cessed or sc heduled TT A co de to parallel TT A co de.

3. Ev aluate e�ects of di�eren t parameters that con trol the co de optimization and

transformation passes on target application p erformance.

4. Ev aluate e�ects of di�eren t co de transformations and sc heduling algorithms

on target application p erformance and select the com bination that b est meets

the set requiremen ts.

4.3 Use Cases

Sc heduling as part of design space exploration. A t ypical user of the sc hed-

uler framew ork uses the sc heduler as part of design space exploration. The user

4. Requiremen ts and High-Lev el Arc hitecture 22

exp erimen ts with di�eren t co de optimizations and parameters, trying to come up

with the most suitable com bination for his needs, and ev aluates what e�ects they

ha v e on exploration results. In this case, the sc heduler is not used as a stand-alone

application.

Sc heduling for a �xed target. Another imp ortan t use case is mapping a target

application for a kno wn �xed target arc hitecture. In this case the sc heduling pro cess

is started from command line or another sc heduler user in terface (UI) clien t. The

sc heduler framew ork is giv en the unsc heduled TT A co de, the target arc hitecture

description and a con�guration �le, in addition to p ossible command line parameters.

The sc heduling pro cess is then launc hed according to giv en con�guration and user-

de�ned sc heduler passes are p erformed on the target application.

Afterw ards, the user ev aluates the results for example b y using the Sim ulator or

the Estimator, and if required, rep eats the pro cess using di�eren t parameters for the

sc heduler passes, or ev en using a completely di�eren t sc heduling algorithm, un til a

satisfying result is found.

Dev eloping new algorithms. Finally , an adv anced t yp e of user is a researc her

dev eloping completely new sc heduling algorithms or co de optimization and trans-

formation tec hniques. The user exploits the �exibilit y and con�gurabilit y of the

framew ork to quic kly exp erimen t with new ideas, then ev aluating the p erformance

of the result and v erifying its correctness for example with the Sim ulator.

The dev elop er ma y c ho ose to re-implemen t a set of in terfaces for some optimiza-

tion subtask de�ned b y the framew ork, or alternativ ely implemen t a completely new

tec hnique indep enden t of the in terfaces pro vided b y the framew ork.

The main �exibilit y p oin ts of the sc heduler framew ork soft w are and a description

of its mo dular arc hitecture are presen ted in detail in Chapter 5.

4.4 Architectural Overview

The sc heduler framew ork w as designed with the imp ortan t requiremen t of easy con-

�gurabilit y and �exibilit y in mind. It pro vides a base on whic h co-op erating mo dules

can b e plugged in at run-time. A sc heduler pass ma y b e implemen ted as a single

mo dule or as a group of mo dules w orking together. One of these mo dules is the

main mo dule and the others are called help er mo dules. Only the main mo dule is

visible outside the pass and is indep enden tly startable.

Eac h mo dule implemen ts the base plug-in in terface describ ed in Section 5.1.1.

This in terface allo ws eac h mo dule to b e replaced at run-time b y another mo dule

p erforming the same task. It is also p ossible to b ypass most of these in terfaces if

the user wishes, as long as the minim um base plug-in in terfaces are implemen ted.

4. Requiremen ts and High-Lev el Arc hitecture 23

Scheduler
front-end

Independent
pass module

Main pass module

Independent
pass module

Main pass module

Pass 1

Pass 2

Pass 3

Pass 4

Helper module

Helper module

Helper module

Figure 4.2: An example co de transformation and sc heduling c hain.

Ho w ev er, the users are encouraged to tak e adv an tage of the in terfaces pro vided b y

the framew ork.

There are no restrictions on the activities p erformed b y a sc heduler pass set b y the

framew ork. It is the resp onsibilit y of the user to con�gure the co de transformation

and sc heduling c hain so that the passes are run in the correct order and that running

a pass do es not bring the target program in an inconsisten t state.

Figure 4.2 presen ts an example sc heduling c hain consisting of four passes and

depicts the connections b et w een the mo dules that form it. P ass 1 and pass 3 are

carried out b y single indep enden t mo dules, whereas the main mo dules in pass 2 and

pass 4 use help ers to p erform certain subtasks.

The main resp onsibilit y of the sc heduler fron t-end also sho wn in the picture is

to load and run the plug-in mo dules that implemen t the passes of the sc heduling

c hain. It also acts as an in terface b et w een the clien ts and the sc heduler application.

See Section 5.1 for additional details.

4. Requiremen ts and High-Lev el Arc hitecture 24

4.5 Co re Interfaces

The sc heduler framew ork o�ers a set of in terfaces that help the user in implemen ting

the most crucial part of the co de transformation and sc heduling c hain, that is,

mapping the unsc heduled co de to the target arc hitecture.

Program Represen tation. Eac h sc heduler pass w orks on a represen tation of the

target program or a part of it. The framew ork pro vides the user with a few di�eren t

ob ject mo dels for the purp ose.

The most basic program represen tation is the Program Ob ject Mo del (POM),

whic h is a simple �at structure of sequen tially ordered instructions. The program

represen tations more suitable for instruction sc heduling and e�ectiv e co de transfor-

mations are graph-based and represen t data and con trol dep endencies.

The program represen tations pro vided with TCE are describ ed in more detail in

Section 5.2

Sc heduler P ass Hierarc h y . Sc heduler passes are classi�ed according to the scop e

of the program they are able to handle, and to the t yp e of data they accept as input.

A pass ma y analyze or transform a whole program in one shot. On the other hand, it

ma y b e able to w ork in the scop e of a single pro cedure only , or ev en just a basic blo c k.

Eac h pro vided program represen tation also has a corresp onding pass in terface.

Eac h pass should implemen t an appropriate part of the hierarc h y dep ending on

its required inputs. More details on the sc heduler pass in terfaces can b e found in

Section 5.3.

Resource Manager. The resource manager k eeps b o ok of used pro cessor re-

sources and other sc heduling constrain ts on eac h cycle of execution on the part

of the target program it handles. It is resp onsible for assigning these resources for

the program to b e used. Also, if the actual assignmen t is done outside the resource

manager, it v eri�es the correctness of the assignmen t and then up dates its resource

b o okk eeping accordingly .

In ternally , the resource manager uses a hierarc h y of sp ecialized managers that

are eac h resp onsible for a single t yp e of resource. These are called resource bro-

k ers. Sections 5.4 and 5.5 giv e a detailed view of the resource managemen t services

pro vided b y the framew ork.

The main clien t of the resource manager is the pass that p erforms the instruction

sc heduling, although other passes that analyze or optimize the co de ma y also require

resource managemen t services.

25

5. DESIGN AND IMPLEMENT A TION

This c hapter describ es the core comp onen ts of the framew ork and ideas b ehind their

design and implemen tation decisions in detail.

5.1 Scheduler F ront-End

Sc heduler fron t-end, implemen ted b y the Sche dulerF r ontend class, is the top-lev el

comp onen t of the framew ork. It pro vides a simpli�ed in terface to b e used b y the

clien ts of the sc heduler to con�gure and start the sc heduling pro cess. A clien t of

the sc heduler ma y b e an y kind of graphical or command line user in terface (CLI)

or a separate con troller mo dule. In other w ords, the sc heduler ma y b e deplo y ed as

a stand-alone terminal-based application that is launc hed and con�gured directly

from command line, or as part of another application suc h as the Explorer.

The fron t-end loads the domain ob ject mo dels suc h as the target pro cessor and

the source program, loads required plugin-mo dules and sets up the sc heduling c hain

according to the sc heduler con�guration (see Sections 5.1.2 and 5.1.3 for more de-

tails). The sc heduler is con�gured either from command line using a con�guration

�le or b y pro viding the fron t-end with pre-constructed ob ject mo dels. The sc heduler

con�guration �le format is de�ned in [18].

After the required ob ject mo dels are set up, the sc heduling pro cess can b e started.

Up on completion of the pro cess, the fron t-end returns the sc heduled program or

writes it to a �le, dep ending on ho w it w as called.

5.1.1 Plug-In Mo dule Interfaces

The sc heduling pro cess is an ordered sequence of sc heduler passes that analyze the

target program and apply optimizations and co de transformations to it. All pass

mo dules � including instruction sc heduling � conform to a generic mo dule in terface.

Eac h mo dule is an instance of the class BaseSche dulerMo dule . It is a base class

that de�nes the minim um in terface eac h mo dule is required to implemen t. These

services include setting up the mo dule with required ob ject mo dels and starting it.

If a sc heduling pass consists of m ultiple mo dules, the main mo dule shall implemen t

the StartableSche dulerMo dule in terface, whic h is a sp ecialization of the base class.

This also is the base class for mo dules that alone form a complete pass. Help er

mo dules that cannot b e run indep enden tly implemen t the Help erSche dulerMo dule

5. Design and Implemen tation 26

Figure 5.1: Plug-in in terfaces.

in terface.

5.1.2 Loading Plug-Ins

The sc heduler fron t-end uses a general in terface for loading plug-ins. This in terface

is implemen ted b y the class Sche dulerPluginL o ader . It loads sc heduler mo dules

from dynamically link able ob ject �les at run-time and manages them through their

lifetime. Although the sc heduler fron t-end is the main clien t for the plug-in loader,

the in terface is useful for an y pass mo dule that ma y require help er plug-in mo dules

to b e loaded during the sc heduling pro cess.

The main adv an tages of a separate abstraction la y er for loading and linking sc hed-

uler plug-ins are that direct comm unication from plug-in mo dules to the sc heduler

fron t-end is a v oided, and that the details of pass mo dule handling, suc h as construc-

tion and destruction as w ell as name and �le matc hing, are completely hidden from

the clien t.

5. Design and Implemen tation 27

5.1.3 Constructing the Scheduling Chain

The fron t-end delegates the setup of the sc heduling c hain to the Sche dulingPlan class.

It constructs the sc heduling c hain from an ob ject tree represen tation of the sc hed-

uler con�guration �le. This tree is generated b y the con�guration �le parser, that

is implemen ted b y the class Sche dulerCon�gur ationSerializer . The plug-in loader

presen ted earlier is used to load an y de�ned plug-in mo dules.

The sc heduler fron t-end follo ws through the sc heduling pro cess b y launc hing the

passes stored in the sc heduling plan in the de�ned order.

The class diagram of the sc heduler plug-in in terfaces and the related classes is

depicted in Figure 5.1.

5.2 Program Rep resentations

The TCE to olset pro vides a set of program ob ject mo dels that enable TCE ap-

plications to access, analyze and mo dify TT A programs. Eac h pro vided program

represen tation is in tended for a sp eci�c purp ose, but a common prop ert y for all

the represen tations is to help TCE applications generate e�cien t co de for the giv en

target TT A pro cessor.

The program represen tations are not just in terfaces, so they are not part of the

actual instruction sc heduler soft w are framew ork, but more lik e domain utilities.

Though, most of them are mainly in tended to b e used b y the sc heduler passes.

These program represen tations are presen ted in the follo wing sections.

5.2.1 Program Object Mo del

The Program Ob ject Mo del (POM) is the most basic program represen tation in

the TCE to olset. It only pro vides the most generic services. It do es not mo del

con trol or data �o w or an y other auxiliary data structures, suc h as basic blo c ks. All

clien t-sp eci�c services are left for the sp ecial purp ose program represen tations suc h

as di�eren t t yp es of graphs.

POM has a simple treelik e structure. The highest lev el of abstraction in POM is

implemen ted b y the Pr o gr am class. Eac h program is seen as an ordered sequence

of pro cedures, implemen ted b y the Pr o c e dur e class. Similarly , eac h pro cedure is

an ordered sequence of instructions, whereas instructions � implemen ted b y the In-

struction class � con tain a non-ordered set of mo v es and long immediates. These are

implemen ted b y the Move and Imme diate classes, resp ectiv ely . The class relations

are depicted in Figure 5.2.

A Pr o gr am instance represen ts a complete TT A program. Instructions in the

program ha v e indices instead of real addresses. Instructions suc h as jumps that p oin t

to other parts of the program refer directly to instructions instead of addresses or

5. Design and Implemen tation 28

Figure 5.2: Program Ob ject Mo del.

indices. The instruction indices are automatically adjusted as a side-e�ect of adding

or remo ving instructions or pro cedures and the InstructionR efer enc eManager class

tak es care that an y a�ected references are up dated. It is the resp onsibilit y of the

paren t ob jects to k eep b o ok of the relativ e p ositions of the mo del parts in their

paren t structures. F or example, an instruction do es not kno w its o wn p osition in

the program. Instead, it has a handle to its paren t pro cedure.

The Move class represen ts a data transp ort through the in terconnection net w ork

of the target TT A. It has a source and a destination and references to required

resources of the target pro cessor. The Imme diate class represen ts a sp ecial data

transp ort of a constan t long immediate v alue enco ded in the paren t instruction to

a dedicated immediate unit register.

F or a complete description of POM with all the details and the rest of the classes

explained, refer to [19].

5.2.2 Graph-Based Program Rep resentations

All graph implemen tations in TCE are based on the Bo ost Graph Library (BGL)

[20]. It pro vides e�cien t implemen tations of some most frequen tly used basic graph

op erations. The b o ost graph library is encapsulated in a class hierarc h y that repre-

sen ts the program at a lev el of abstraction suitable for instruction sc heduling.

The base class for all graphs in TCE, Bo ostGr aph , is a BGL-based implemen tation

of a graph. It is inherited from an implemen tation-indep enden t templated base

in terface, Gr aphBase . Eac h graph con tains a set of no des and edges, implemen ted

b y the classes Gr aphNo de and Gr aphEdge , resp ectiv ely .

5. Design and Implemen tation 29

Figure 5.3: Base graph in terfaces.

The purp ose of these base classes is to encourage a consistency in the in terfaces

of all graph implemen tations in TCE and to suggest a minim um set of services eac h

graph should pro vide. These are for example addition and deletion of no des and

edges, tests for connectivit y and simple searc h algorithms, whic h dep end only on

the top ological structure of the graph, not on the sp ecialized data that resides in its

no des and edges.

F or eac h sp ecialized graph t yp e, the required implemen tations of the no de and

edge classes are inherited from the Gr aphNo de and Gr aphEdge base classes. Most

imp ortan tly , the graph class itself is sp ecialized from the appropriate base class. The

base classes are illustrated in Figure 5.3.

Con trol Flo w Graph. The con trol �o w graph in TCE is a more sp ecialized

program represen tation that implemen ts the concept of the con trol �o w graph as

describ ed in Section 3.5.2. Its class diagram is depicted in Figure 5.4.

The pa yload data in the no des of the CF G are basic blo c ks. The no des are

implemen ted b y the class BasicBlo ckNo de . Eac h no de consists of a single basic

blo c k, represen ted b y the class BasicBlo ck . The additional data in the no des include

information whether the no de is an en try or exit no de, or whether it just con tains

an ordered sequence of instructions. The basic blo c ks also con tain statistics of ho w

man y instructions, mo v es or long immediates there are in the basic blo c k. This

information can b e retriev ed from the BasicBlo ck ob ject.

The edges in the CF G represen t c hanges in the �o w of con trol from one basic

blo c k to another. This c hange is alw a ys caused b y a jump or a call, or a fall-through

from previous basic blo c ks. The c hange in con trol �o w ma y b e conditional (true or

5. Design and Implemen tation 30

Figure 5.4: Con trol �o w graph class diagram.

false edges) or unconditional.

The con trol �o w graph is constructed in t w o main phases: First, the b eginnings

and ends of basic blo c ks are detected and basic blo c k instances are created. Then

the whole program is parsed through again, and eac h time a c hange in the �o w of

con trol (a jump or a call) is found an edge is created. Finally , arti�cial en try and

exit no des are created and added to the graph.

See [15] for more details on the algorithm used to build the CF G.

Data Dep endency Graph. TCE also pro vides an implemen tation of the data

dep endency graph (see Section 3.5.3). The class diagram is presen ted in Figure 5.5.

The no des in the DDG are single mo v es and the edges represen t di�eren t t yp es

of data dep endencies b et w een them.

The p ossible dep endency t yp es are r e ad after write , write after write and write

after r e ad . The �rst t yp e is the basic case, the data should b e written b efore it is

read. The t w o latter are an ti-dep endencies: consecutiv e writes m ust b e done in the

righ t order, and a write op eration is p ossible only after the previous v alue has b een

consumed.

The edge reason tells where the dep enden t data resides: in a register or in memory .

5. Design and Implemen tation 31

Figure 5.5: Data dep endency graph class diagram.

In TT A, the data dep endency ma y also b e b et w een the mo v es of a single op eration,

or b et w een writes to an FU, if the op eration has a state.

The data dep endency graph ma y b e constructed for a single basic blo c k or for a

whole con trol �o w graph. Building a DDG for a CF G is a bit more complicated than

for a single basic blo c k: The CF G is w alk ed through starting from the �rst basic

blo c k in top ological order. In addition to the data dep endencies inside the basic

blo c ks, the dep endency edges that cross basic blo c k b oundaries are also created.

The algorithm used in building the DDG can b e found in [15].

5.3 Scheduler P ass Hiera rchy

Eac h sc heduler pass ma y require di�eren t inputs, pro duce di�eren t outputs and

handle di�eren t scop es of the input program. Figure 5.6 depicts a simpli�ed diagram

of the in teractions b et w een a sc heduler pass and its inputs and outputs.

The class Sche dulerPass is the base in terface for all sc heduler passes. All passes

should sp ecialize the appropriate sub class in the hierarc h y , dep ending on the t yp e

of data and the scop e of the input program they handle.

The sc heduler pass hierarc h y con tains sp ecial in terfaces for passes that handle

whole programs, pro cedures or just basic blo c ks. P asses that w ork with con trol

�o w or data dep endency graphs also ha v e their o wn base classes, as illustrated in

Figure 5.7.

5. Design and Implemen tation 32

Input program
representation

Output program
representation

Scheduler pass

Internal program
representation

Generic TTA
architecture Target architecture

read write

convert convert
access &
transform

Figure 5.6: Sc heduler pass inputs and outputs.

Sc heduler passes comm unicate using an auxiliary class InterPassData . It pro-

vides a general storage for data of an y t yp e and a generic in terface for accessing

it. A dditionally , it pro vides shortcuts to access the most frequen tly used data. An

InterPassData instance is passed through ev ery pass in the sc heduling c hain that

requires the data.

The data is stored in k ey-v alue-pairs, a string as the k ey and an instance of the

class InterPassDatum as the v alue. The InterPassDatum class is a simple in terface

that the data required should implemen t.

As a concrete example of in ter-pass data passed in the basic blo c k sc heduler (see

Section 6.1.2), the registers that are left unallo cated in the register allo cation pass

are passed to the instruction sc heduling pass to b e used as temp orary data storages

as required due to reduced connectivit y .

5.4 Resource Mo del

The resource mo del is a dynamic abstraction used for k eeping b o ok of pro cessor

resource usage at eac h cycle of the curren t sc heduling scop e. It is a hierac h y of in ter-

dep enden t ob jects that eac h represen t pro cessor comp onen ts and other sc heduling

constrain ts. With the resource manager (see Section 5.5) it pro vides means to allo-

cate and assign resource during instruction sc heduling.

A resource mo del do es not need to describ e the pro cessor arc hitecture in ev ery

detail as the Mac hine Ob ject Mo del (MOM) do es. It only represen ts hardw are and

other constrain ts as seen from the p oin t of view of instruction sc heduling.

The base class of the hierarc h y is Sche dulingR esour c e . It pro vides a generic in ter-

face for handling all resource t yp es. One of the most imp ortan t services is testing

for a v ailabilit y , that is, answ ering to the question �can this resource b e assigned to

5. Design and Implemen tation 33

Figure 5.7: Sc heduler pass class hierarc h y .

the giv en mo v e at the giv en clo c k cycle?� An a v ailable resource can then b e as-

signed, or an already assigned resource ma y b e freed. They can also b e queried for

dep enden t or related resources. The adv an tage of pro viding suc h a general in terface

is that clien ts do not need to ha v e kno wledge of the sp eci�cs of eac h resource t yp e.

Instead, all t yp e-sp eci�c information is hidden under the common in terface.

Dep enden t resources are resources tigh tly connected to eac h other. If a dep enden t

resource is assigned, the resource it dep ends on is also assigned as a side-e�ect. On

the other hand, if a resource is assigned, at least one resource of eac h t yp e from

the list of dep enden t resources needs to b e also assigned. F or example an execution

pip eline is an inseparable part of a function unit, and therefore an execution pip eline

resource is dep enden t on a function unit resource.

Resources related to eac h other m ust also b e assigned in conjunction. If no related

resource of a giv en t yp e is a v ailable for assignmen t, it is not p ossible to assign the

other resource, ev en if itself is a v ailable. F or example, bus and so c k et resources are

related to eac h other. If all buses connected to an output so c k et are in use in the

giv en cycle, the so c k et cannot b e assigned and vice v ersa.

Altough the main purp ose of the resource mo del is to de�ne a base in terface and

determine general design guidelines, the instruction sc heduler framew ork includes a

complete implemen tation of a simple resource mo del to b e used b y the resource man-

ager. The concrete resource t yp es deriv ed from the base class Sche dulingR esour c e

mostly corresp ond to the basic TT A building blo c ks represen ted in Chapter 2, al-

though dep ending on the resource in question, the relation to concrete hardw are

5. Design and Implemen tation 34

Figure 5.8: Resource mo del class diagram.

blo c ks ma y not alw a ys b e direct. In addition, some resource t yp es in the mo del do

not exist in hardw are at all, but represen t more abstract sc heduling restrictions that

need to b e tak en in to accoun t while assigning resources to program elemen ts.

Register �les are the only signi�can t resource completely missing from the mo del,

b ecause the resource manager implemen tation assumes registers pre-assigned.

The resource t yp es are presen ted brie�y in the follo wing and a complete descrip-

tion is a v ailable in [21]. The class diagram of the resource mo del is depicted in

Figure 5.8.

Input and Output P-So c k et Resource. When input or output p orts of a unit

are assigned, one and only one so c k et is implicitly assigned as w ell. That is b ecause

in a TT A a so c k et can b e connected to m ultiple p orts, but a p ort is connected to

only one so c k et of the corresp onding direction. That is wh y p orts and so c k ets are

mo delled b y a single resource.

An �input p-so c k et� resource represen ts an input so c k et and the p orts connected

to it. Similarly , an �output p-so c k et� resource represen ts an output so c k et and the

p orts it is connected to.

The related resources of a p-so c k et resource are unit inputs or outputs and bus

segmen ts. If an input p-so c k et is a com bination of an input so c k et and a triggering

FU p ort, then the related input FU resource has an additional dep enden t resource:

the execution pip eline resource.

5. Design and Implemen tation 35

Short Immediate P-So c k et Resource. The short immediate p-so c k et is an

arti�cial resource in the sense that it has no direct hardw are corresp ondence. It is

assigned when the source of a mo v e is an immediate v alue.

The �rst segmen t of eac h bus has a related short immediate p-so c k et resource

that represen ts the immediate transp ort capabilities of the bus. Consequen tially , a

bus can carry out only one short immediate transp ort p er clo c k cycle, ev en if it is

segmen ted.

Input and Output F unction Unit Resource. The resource mo del includes t w o

di�eren t FU resources, input and output FU resources, whic h represen t the set of

p orts of the same direction.

When an FU resource is assigned, a p-so c k et and usually an execution pip eline

resource m ust b e assigned as w ell. Since inputs and outputs of an op eration are

b ound to p orts, the p-so c k et resource to b e used is determined b y the op eration

that is b eing executed. If the p ort used sets the op co de, a corresp onding execution

pip eline resource is also assigned. Therefore, p-so c k ets and execution pip elines are

resources dep enden t on the FU resource.

Execution Pip eline Resource. Di�eren t function units ha v e di�eren t in ternal

resources that are used b y the op erations it implemen ts. Eac h op eration supp orted

b y the FU has a resource usage pro�le. Eac h time an op eration is triggered, the

resources are utilized according to the pro�le. An execution pip eline resource k eeps

b o ok of the resource usage, that is, the state of the execution pip eline in eac h cycle

of execution. If the resource usage pro�le of a triggered op eration con�icts with the

curren t state of the pip eline, the execution pip eline resource is una v ailable at that

cycle.

The execution pip eline resource also k eeps trac k of op erand writes and result

reads. F or example, if one op erand of an op eration is written in cycle x and the

other, triggering op erand in cycle y , it is not p ossible to write an op erand of some

other op eration to the same FU b et w een cycles x and y . Also, if the result of an

op eration is ready at cycle i and it is read at cycle j , it is not p ossible to start an

op eration that w ould pro duce a result b et w een cycles i and j , th us o v erwriting the

previous result.

Bus and Segmen t Resource. A transp ort bus consists of one or more segmen ts.

A bus segmen t can p erform a data transp ort from source to destination. These

are mo delled b y bus and segmen t resources, resp ectiv ely . Segmen ts are dep enden t

resources of the corresp onding bus resource. Input and output p-so c k ets connected

to bus segmen ts are related resources.

5. Design and Implemen tation 36

TCE v ersion 1.0 do es not supp ort segmen ted buses. Therefore, in the curren t

implemen tation of the resource mo del, there are only single-segmen t buses. Conse-

quen tially , on higher lev el, the concept of a segmen t can b e completely ignored.

Immediate Unit Resource. Immediate units are used to store long immediate

v alues. The immediate unit resource k eeps b o ok of eac h register an IU con tains.

Bet w een de�nition of an immediate register and its last use, the register is considered

as b eing �in use�.

The p-so c k ets used to transp ort the immediate v alues to or from the IU are related

resources. The instruction template assigned to the de�nition of the immediate v alue

is a resource dep enden t on the assigned IU.

Instruction T emplate Resource. An instruction template sp eci�es the set of

mo v e slots used for enco ding immediate bits instead of data transp orts, and a des-

tination immediate unit. One of the registers of the sp eci�ed IU is used for storing

the immediate v alue. This is mo delled b y the instruction template resource.

5.5 Resource Manager

The purp ose of the resource manager is to assign a v ailable resources on mo v es and

other elemen ts of the program within the limits of its scop e. The resource assignmen t

itself can also b e carried out b y an external en tit y , in whic h case, the resource

manager is used only to v erify that there are no resource con�icts due to these

assignmen ts.

Resources of the same t yp e are managed b y resource brok ers, whic h are presen ted

in Section 5.5.4. Co-ordination of resource brok ers is delegated to the brok er director.

Using the giv en assignmen t plan, it decides in whic h order the brok ers are in v ok ed

and resources tested for a v ailabilit y and assigned on no des. See Sections 5.5.3 and

5.5.5 for more details.

The resource manager implemen tation included in the framew ork is based on the

resource mo del presen ted in Section 5.4, but an y implemen tation compatible with

the resource manager in terface ma y b e used as a replacemen t.

5.5.1 Scop e of Resource Management

A resource manager instance is alw a ys connected to a sc heduling scop e. A single

resource manager ma y only b e able to handle resource assignmen t in the scop e of a

basic blo c k, but dep ending on the implemen tation, it ma y also span m ultiple basic

blo c ks.

5. Design and Implemen tation 37

Figure 5.9: Asso ciations b et w een classes in the resource manager mo dule.

5.5.2 Resource Manager Interface

The basic set of services pro vided b y the resource manager in terface is the follo wing:

1. T ell whether a giv en mo v e can b e assigned all required resources without con-

�icts in the giv en cycle or not.

2. Assign resources to a mo v e in the giv en cycle.

3. Unassign all resources assigned to a mo v e.

4. T ell what is the earliest or the latest clo c k cycle, where all the required re-

sources can b e assigned to a mo v e without con�icts.

This is the minim um in terface required to b e implemen ted b y eac h resource manager,

that is, a sub class of the R esour c eManager base class. It is still missing for example a

full supp ort for external resource assignmen t and probably some other useful services

dep enden t on the instruction sc heduler implemen tation. The users are encouraged

to extend this in terface if required in their concrete implemen tations to pro vide �ner

con trol o v er the resource assignmen t pro cess.

F or a more detailed description of the in terfaces of the resource manager, see [21].

The class diagram in Figure 5.9 depicts the asso ciations b et w een the resource

manager and its help er classes whic h are describ ed in the follo wing sections.

5. Design and Implemen tation 38

5.5.3 Brok er Directo r

The brok er director is the main con troller in the pro cess of allo cating and assigning

resources to a mo v e. It implemen ts the same basic resource manager in terface as

the concrete resource manager, b ecause the resource manager delegates all allo cation

and assignmen t requests to its brok er director.

With the help of the assignmen t plan, the brok er director decides in whic h order

the resource-sp eci�c brok ers are called to carry out their part in the assignmen t. It

also implemen ts the actual algorithm for allo cating resources on a single mo v e.

The brok er director is inspired b y the Mediator design pattern [22]. It do es not

hard-co de dep endencies b et w een brok ers, and the brok er in v o cation sequence is not

dep enden t on an y brok er implemen tation. That is wh y resource brok ers can b e

replaced with another implemen tation without mo di�cations to the brok er director.

5.5.4 Resource Brok ers

Resource brok ers are resp onsible for managing assignmen t of groups of resources of

the same t yp e. There is a brok er for eac h t yp e of resource. Clien ts that need to

assign a certain resource t yp e to a mo v e need to comm unicate with the appropriate

brok ers. The brok ers also main tain links from resource ob jects to concrete mac hine

parts.

Resource brok ers do not comm unicate direcly with eac h other. If information

exc hange is required, it is done through their con troller class, Br okerDir e ctor .

Con v en tionally the resource brok ers are named after the main sc heduling resource

they manage. F or example, a BusBr oker manages assignmen t of transp ort buses.

All concrete resource brok ers are deriv ed from the R esour c eBr oker base class.

The implemen tations pro vided b y TCE are brie�y describ ed in the follo wing.

InputFUBrok er. This brok er is resp onsible for assigning function unit inputs. It

maps op eration inputs to input p orts and so c k ets, and when assigning an op co de-

setting op eration input, op erations to execution pip elines.

OutputFUBrok er. This brok er is resp onsible for assigning function unit outputs.

It maps op eration outputs to output p orts and so c k ets.

InputPSo c k etBrok er. The InputPSo cketBr oker maps a write access to a unit or

a register �le through one of its p orts and the asso ciated so c k et.

OutputPSo c k etBrok er. The OutputPSo cketBr oker maps a read access from a

unit or a register �le through one of its p orts and the asso ciated so c k et.

5. Design and Implemen tation 39

ExecutionPip elineBrok er. The Exe cutionPip elineBr oker maps the resource us-

age of executed op erations to the pip eline resources of the asso ciated function unit.

IUBrok er. This brok er maps long immediates to the registers of an immediate

unit.

BusBrok er. This brok er maps data transp orts to buses.

IT emplateBrok er. The IT emplateBr oker is resp onsible for assigning instruction

templates on instructions for eac h cycle in its scop e.

Eac h resource brok er implemen tation can b e replaced with another without an y

mo di�cations to the con troller classes pro vided that the resource t yp es are compat-

ible and the implemen ted in terface remains the same.

This b ecomes sensible if enhanced or case-dep enden t heuristics are required for

selecting resources. F or example, the FUBr oker implemen tations pro vided with

TCE use a simple �rst-�t algorithm for selecting function units for assignmen t.

That is, the �rst unit found that is a v ailable and supp orts the giv en op eration is

selected and assigned. The user ma y w an t to giv e more in telligence to the brok er so

that it compares all a v ailable units that supp ort the giv en op eration, and according

to their prop erties, for example other supp orted op erations or connections to other

units, c ho oses the b est one in the curren t situation.

5.5.5 Assignment Plan

The AssignmentPlan class is a cen tral help er class used in resource assignmen t. It

determines in whic h order resources are assigned to a mo v e and stores the curren t

state of the pro cess of assigning resources to a mo v e.

It k eeps trac k of ten tativ e and p oten tial assignmen ts for eac h resource t yp e. These

assignmen ts are represen ted b y an ordered sequence of p ending assignmen ts. The

assignmen t plan implemen ts adv ancing and bac ktrac king assignmen ts for eac h re-

source t yp e.

The PendingAssignment class represen ts the temp orary state of the assignmen t

pro cess of a single resource t yp e. It con tains a set of p oten tial assignmen ts of

resources and records the curren tly c hosen assignmen t. Ev ery resource brok er has

one asso ciated p ending assignmen t ob ject. The main resp onsibilit y of the p ending

assignmen t is to manage the candidate resource assignmen ts found b y the brok er

and k eep a record of already tried and discarded assignmen ts.

5. Design and Implemen tation 40

Figure 5.10: Asso ciations b et w een classes in v olv ed in resource mo del construction.

5.5.6 Resource Mo del Construction

The resource mo del itself do es not pro vide a mec hanism for building the mo del for

example from a MOM instance. It is the resp onsibilit y of the resource manager

to construct the mo del according to the prop erties of the concrete resource t yp es

and the dep endencies b et w een them. This job is delegated to resource brok ers, that

kno w the concrete t yp e of eac h resource ob ject and its relation to the parts of the

target mac hine.

Because resources ha v e dep endencies and relations to eac h other, and some of

the related resource instances ma y not exist at the time the other related ob ject is

constructed, the resource mo del construction is divided in t w o phases. In the �rst

phase, eac h resource brok er constructs the primary resource ob jects it manages. In

the second phase, eac h brok er sets up links to all dep enden t and related resource

ob jects whic h all are no w constructed.

T w o classes help in co ordinating the resource mo del construction: the R esour c e-

BuildDir e ctor is a main co ordinator in the pro cess and the R esour c eMapp er maps

resource ob jects to concrete mac hine parts as required in the second phase. The

classes in v olv ed in resource mo del construction are depicted in Figure 5.10.

5.5.7 Resource Assignment

The resource allo cation and assignmen t pro cess is started b y constructing a resource

manager instance. Then, from the ob ject mo del of the target mac hine (MOM), the

5. Design and Implemen tation 41

1: function assign (move, cycle)

2: plan.setRequest(move, cycle) . prepare plan to assign resources for

3: . the giv en mo v e on the giv en cycle

4: success:= false
5: while not successdo

6: if not plan.isT estedAssignmen tP ossible() then

7: if curren t brok er is the �rst then

8: plan.resetAssignmen ts() . no resource assignmen t found

9: return false

10: else

11: plan.bac ktrac k()

12: end if

13: else

14: plan.tryNextAssignmen t()

15: if curren t brok er is the last then

16: success:= true . v alid resource assignmen t found

17: else

18: plan.adv ance()

19: end if

20: end if

21: end while

22: end function

Figure 5.11: Resource assignmen t algorithm.

resource manager builds the resource mo del it uses in resource b o okk eeping. The

initialization of the resource manager also includes forming an assignmen t plan,

whic h is then passed to the brok er director.

When the resource manager (or the brok er director) is ask ed to assign resources

to a mo v e, it go es through the brok ers according to the assignmen t plan and requests

eac h brok er to assign a resource of the appropriate t yp e to the mo v e. As describ ed

earlier, the assignmen t plan k eeps trac k of the v alid assignmen ts for a giv en resource

t yp e and records whic h of these ha v e already b een ev aluated.

Finally , if a v alid assignmen t is found for ev ery applicable t yp e of resource, the

resource assignmen t for the giv en mo v e is completed. On the con trary , the resource

assignmen t will fail, if it is not p ossible to �nd a v alid assignmen t for some resource

t yp e ev en after bac ktrac king and trying other p ossible com binations of assignmen ts.

The resource assignmen t algorithm used is represen ted in Figure 5.11.

5.6 Customization and Maintenance

In this section, the main c haracteristics of the framew ork from the �exibilit y p oin t

of view are discussed and explained b y giving a few t ypical use case examples and

describing what kind of mo di�cations or additions are needed in eac h case.

5. Design and Implemen tation 42

A dding a new pro cessor resource t yp e. When a new hardw are resource t yp e

that the instruction sc heduler m ust tak e in to accoun t is in tro duced, a couple of

extensions are needed in the resource mo del and the resource manager implemen ta-

tions.

First, the new resource requires a class that implemen ts the Sche dulingR esour c e

in terface to enable state b o okk eeping for the resource. Similarly , a sp ecialized R e-

sour c eBr oker is needed to tak e care of selecting resources of this t yp e for assignmen t.

Finally , the resource manager implemen tation needs to b e a w are that there is a new

brok er capable of assigning the new resource t yp e. The resource manager instan ti-

ates the brok er and registers it to its resource build director to add the resource in

the resource mo del at the time it is constructed. The new brok er is also registered

in the brok er director to include it in the assignmen t pro cess.

Changing the b eha vior of an existing pro cessor resource. If the b eha vior

of an already existing hardw are resource is c hanged, it only a�ects the lo w est lev els

of the resource mo del and the resource manager, that is, the sc heduling resource

ob ject that represen ts the corresp onding mac hine part and probably its brok er.

If the c hange has an e�ect only on the b o okk eeping of the in ternal state of the

resource, only the resource class should b e mo di�ed. On the other hand, if the c hange

a�ects the resource selection and assignmen t pro cesses, then also the resource brok er

should b e mo di�ed accordingly .

Impro ving resource selection heuristics. If the user of the framew ork w an ts

to impro v e the algorithm that selects a resource from a set of a v ailable candidates,

either the existing brok er of the corresp onding resource should b e mo di�ed or a new

sp ecialized implemen tation of the brok er should b e inherited.

If the resource selection algorithm in the already existing brok er is mo di�ed, no

other c hanges in the framew ork are needed. If the curren t brok er implemen tation

is replaced b y a new one, the resource manager needs to also b e a w are that the old

brok er should b e replaced.

W riting a new co de transformation or optimization pass. T w o write a new

co de transformation or optimization pass and include it in the sc heduling c hain, the

user needs implemen t an appropriate part of the base plug-in in terfaces: if the pass

is indep enden t, it should implemen t StartableSche dulerMo dule or if it implemen ts a

subtask of another mo dule, it should sp ecialize Help erSche dulerMo dule . The pass

needs then to b e added to the sc heduler con�guration in the desired p osition. The

co de transformation algorithm ma y also implemen t a part of the sc heduler pass

hierarc h y , dep ending on its required inputs.

43

6. INSTRUCTION SCHEDULING ALGORITHM

IMPLEMENT A TIONS AND VERIFICA TION

This c hapter describ es ho w the instruction sc heduler framew ork w as put to the test

and v eri�ed b y implemen ting a couple of �pro of-of-concept� instruction sc heduling

algorithms. Some b enc hmark results gathered using the TCE testb enc h are also

presen ted in the end of the c hapter.

6.1 Pro of-of-Concept Algo rithm Implementations

T o v erify that the framew ork meets the requiremen ts, is as �exible as planned and

generally mak es sense, t w o instruction sc heduling algorithms w ere written for the

framew ork. The implemen ted algorithms use the in terfaces pro vided b y the frame-

w ork as m uc h as p ossible so that an y design �a ws and in�exibilities concerning the

in terfaces w ould b e rev ealed. Some minor design c hanges w ere indeed made during

the pro cess of writing these algorithms.

Some b enc hmarks w ere also run using these algorithms. The purp ose of these

b enc hmarks w as not to ev aluate the p erformance of the implemen ted algorithms,

but to v erify that the implemen ted algorithms pro duce a correct sc hedule and sho w

ho w the used algorithm and the input parameters, suc h as the target application

and the giv en arc hitecture, a�ect the pro duced sc hedule. The b enc hmarks also giv e

an early p ersp ectiv e on the p oten tial of the framew ork and sc heduling algorithms

written on it.

This v eri�cation pro cess as a whole co v ers most of the framew ork use cases and

p ossible user needs: dev eloping new algorithms, sc heduling for a �xed target and

ev aluating e�ects of di�eren t algorithms and parameters on the pro duced sc hedule

(see Sections 4.2 and 4.3). Therefore, the successful completion of these b enc hmarks

is considered a thorough v eri�cation.

The �rst instruction sc heduling algorithm implemen tation, called the se quential

�rst-�t r esour c e mapp er , can not p erform prop er instruction sc heduling, but uses

the resource manager in terface to directly map the pro vided in termediate program

represen tation to concrete pro cessor resources of the target arc hitecture. The sec-

ond algorithm implemen ted is a complete basic blo c k instruction sc heduler. The

implemen tations of b oth the algorithms are presen ted in the follo wing sections.

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 44

6.1.1 Sequential First-Fit Resource Mapp er

The sequen tial �rst-�t resource mapp er �sc hedules� the giv en IR for the target ar-

c hitecture without an y parallelization or other optimizations b y simply assigning

required pro cessor resources to the program. In case an op eration latency is larger

than one cycle, the algorithm generates no-op erations (NOPs) to w ait for the result.

The resource assignmen t algorithm assumes registers pre-assigned b y the fron t-end.

The resource mapp er consists of a single sc heduler pass written according to the

plug-in mo dule in terfaces of the framew ork describ ed in Section 5.1.1. The class that

implemen ts the resource assignmen t pass is Se quentialFirstFitR esour c eA l lo c ator , a

sub class of StartableSche dulerMo dule . F or resource b o okk eeping, the resource map-

p er uses a SimpleR esour c eManager instance, whic h is a simple implemen tation of the

resource manager in terface of the instruction sc heduler framew ork (see Section 5.5).

6.1.2 Basic Blo ck Scheduler

The basic blo c k sc heduler implemen ted on the sc heduler framew ork is a full-blo wn

instruction sc heduler capable of sc heduling and assigning resources either to a whole

program or to a single basic blo c k.

A t the highest lev el, the class BasicBlo ckSche dulerPass implemen ts a startable

sc heduler mo dule based on the plug-in in terface of the framew ork (see Section 5.1.1).

It tak es the source program and the target arc hitecture as input and instan tiates a

BasicBlo ckSche duler , whic h is a class that implemen ts the actual instruction sc hed-

uler b y sp ecializing m ultiple parts of the sc heduler pass hierarc h y describ ed in zSec-

tion 5.3. Because of this p olymorphism, the class is able to tak e man y di�eren t

scop es and program represen tations as input: a whole program or a single pro ce-

dure as POM, a CF G or a DDG, or just a single basic blo c k.

The sc heduling pro cess is started b y �nding the basic blo c ks in the program. This

is done b y constructing a CF G for eac h pro cedure in the program. A t this p oin t,

a pro cedure-wide DDG is built, whic h is later used also for �lling dela y slots of

con trol �o w op erations. Then, the CF G's are sc heduled no de b y no de, no des b eing

the found basic blo c ks.

F or eac h basic blo c k, a DDG (a subgraph of the pro cedure-wide DDG) and a

resource manager instance is constructed, whic h are then used to sc hedule the mo v es

in the giv en basic blo c k. SimpleR esour c eManager is used in resource b o okk eeping

and assignmen t, just lik e in the sequen tial resource mapp er.

The basic blo c k sc heduler is a lo cal sc heduler in the sense that most optimizations

are only run in the scop e of a single basic blo c k. Only the dela y slot �ller is able to

imp ort op erations from one basic blo c k to another.

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 45

Cop ying dela y slot �ller. The TT A has co de-visible jump latency , whic h means

that branc hing results in additional dela y slots after the jump. The dela y slot �ller

tries to �hide� these slots b y �lling them with instructions from successiv e basic

blo c ks. If the jump is conditional, the mo v es in the instruction are also giv en the

same condition.

The dela y slot �ller is run after a whole pro cedure has b een sc heduled. It c hec ks

all basic blo c ks that are jump targets for co de that could b e mo v ed to the dela y

slots of the jump. All mo v es k eep their relativ e p ositions. T ransp ort buses need to

b e reassigned for these mo v es, but other resources remain in tact.

Register cop y adder. A sensible target arc hitecture usually has limited connec-

tivit y . The sc heduler m ust cop e with cases when there is no direct connection from

the source of a mo v e to the destination. F or example, the output p ort of a function

unit that is assigned to p erform an op eration ma y not b e directly connected to the

input p ort of the previously assigned register �le. The basic blo c k sc heduler deals

with these cases b y adding temp orary register mo v es.

This in v olv es �nding a register that is connected to b oth the source and destina-

tion of the original mo v e and then inserting an additional data transp ort through

this temp orary register. Multiple temp orary register mo v es ma y b e required if con-

nectivit y is v ery limited.

A dding temp orary register mo v es increases the cycle coun t of the output program

but is necessary to pro duce executable co de.

The register cop y adder is a pass that handles required temp orary register mo v es

in the basic blo c k sc heduler. In case of missing connectivit y in op erand mo v es of

op erations, it tries to add the minim um required n um b er of extra data transp orts

through registers in the program.

In addition, it annotates the mo v es of the op eration with missing connectivit y

with a b est FU assignmen t, that is, the assignmen t that requires least temp orary

mo v es. Long immediates are also annotated with the b est IU assignmen t. In this

w a y , the register cop y adder �guides� the resource manager in assigning resources.

After executing this pass, the sc heduler ma y assume, that there is enough con-

nectivit y a v ailable to pro duce a v alid sc hedule for the program.

Soft w are b ypasser. This help er class applies soft w are b ypassing as describ ed

in Section 2.4. While sc heduling an op eration, it sees whether it can transfer the

input op erands of the curren tly sc heduled op eration directly from the outputs of the

op eration on whic h it is data dep enden t.

After sc heduling the result reads of the op eration, dead-result elimination is ap-

plied. If p ossible, the b ypassed and th us obsolete result mo v e is remo v ed from the

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 46

Arc hitecture ALU FU's Registers Buses

Minimal 3 1x8 1

Restricted 3 1x8 2

4-bus 3 1x16 4

Huge 20 8x32 32

T able 6.1: Benc hmark mac hine con�gurations.

sc hedule.

Long immediate handling. Some immediate v alues in the program ma y b e large

enough to exceed the width of the source �eld of the mo v e slot in the used instruction

enco ding. If the sc heduler cannot �nd a suitable enco ding for the immediate of the

required width, the so called long immediate needs to b e transp orted through an

immediate unit. The simplest w a y for the sc heduler to handle this is to insert an

instruction b efore the instruction con taining the original immediate transp ort, and

in that instruction, de�ne a transp ort to an immediate unit. The original immediate

transp ort is then replaced b y a read from the register of the immediate unit.

A more adv anced algorithm that lo oks for a space for the long immediate de�ni-

tion in the earlier clo c k cycles without inserting a new instruction w ould b e preferred.

This metho d is used in the basic blo c k sc heduler.

The follo wing sections describ e ho w the functionalit y of the framew ork w as v er-

i�ed b y running selected b enc hmarks using the previously presen ted instruction

sc heduling algorithm implemen tations and a set of target arc hitectures.

6.2 T est Cases and Benchma rks

The instruction sc heduling algorithm implemen tations w ere v eri�ed and b enc h-

mark ed using a set of real-life test cases and four di�eren t 32-bit TT A mac hine

con�gurations. The pro cessor resources in eac h arc hitecture are presen ted in T a-

ble 6.1. In addition to the listed resources, eac h mac hine con tains a load/store-unit,

an immediate unit and a global con trol unit. They all ha v e a fully connected IC.

The purp ose of the huge mac hine is to pro vide the sc heduler with as m uc h ILP

as p ossible. Using this mac hine w e are able to determine ho w w ell the sc heduler

can exploit a v ailable ILP in the soft w are when pro cessor resources are not limited.

Using the constrained mac hines, minimal , r estricte d and 4-bus whic h con tain less

duplicated resources w e can see ho w w ell the sc heduler utilizes more scarce resources

while still trying to exploit as m uc h ILP as p ossible.

Eac h test case w as �rst transformed to LL VM b yteco de using the TCE fron t-end.

The b yteco de w as then sc heduled for all target arc hitectures using the sequen tial

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 47

SEQUENTIAL Minimal Restricted 4-bus Huge

Cycle coun t 718096 718096 476809 439708

Register reads 246798 246798 145417 145097

Register writes 201939 201939 133364 133172

Op erations/cycle 0.27 0.27 0.23 0.25

BB SCHEDULED

Cycle coun t 572515 349458 198085 197346

Register reads 203556 147142 83057 71265

Register writes 167476 119775 92572 86644

Op erations/cycle 0.34 0.56 0.55 0.55

T able 6.2: ADPCM b enc hmark results.

�rst-�t resource mapp er, referred to as �Sequen tial� in the b enc hmark results tables.

Correctness of the pro duced sc hedule w as v eri�ed b y sim ulating eac h test case with

the TCE sim ulator [3] and comparing the pro duced output to the exp ected correct

output. Some k ey p erformance �gures w ere also gathered to see the e�ect di�eren t

target arc hitectures had on the sc hedule.

The same pro cedure w as then rep eated using the basic blo c k sc heduler as the

sc heduling algorithm. The same p erformance data w as collected to see ho w the

selected algorithm a�ected the sc hedule. The b enc hmark results pro duced using the

basic blo c k sc heduler are referred to as �BB Sc heduled� in the comparison tables.

In the comparisons w e use the follo wing p erformance �gures: cycle c ount , r e gister

r e ads and writes and op er ations p er cycle . Cycle coun t is the most fundamen tal

measure, since it tells exactly ho w long the program tak es to execute. Register reads

and writes measure ho w w ell the sc heduler can b ypass unnecessary register accesses,

and �nally , op erations p er cycle indicates ho w w ell the program w as parallelized.

All t yp es of op erations (arithmetic as w ell as memory op erations) are included in

this coun t.

The test cases and pro duced results are presen ted in the follo wing.

ADPCM. The �rst test case is a short ADPCM enco de/deco de routine from the

DSP-Stone test suite [23]. The b enc hmark results are sho wn on T able 6.2.

FFT. The second test case p erforms a 1024-p oin t in-place radix-4 decimation-

in-time (DIT) FFT on the giv en input. The b enc hmark results are presen ted on

T able 6.3.

JPEG. This test case deco des a 227 x 149 pixel JPEG image. The results are

presen ted on T able 6.4.

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 48

SEQUENTIAL Minimal Restricted 4-bus Huge

Cycle coun t 4996643 4996643 2996533 2562265

Register reads 2000520 2000520 1155980 980615

Register writes 1420840 1420840 846132 719413

Op erations/cycle 0.31 0.31 0.27 0.26

BB SCHEDULED

Cycle coun t 3861263 2203976 1218412 762193

Register reads 1435000 1066880 815878 437815

Register writes 870935 540399 552440 307620

Op erations/cycle 0.40 0.69 0.73 0.87

T able 6.3: FFT b enc hmark results.

SEQUENTIAL Minimal Restricted 4-bus Huge

Cycle coun t 76210262 76210262 41434170 35067561

Register reads 31373900 31373900 16911700 14206800

Register writes 22448000 22448000 12312500 10096800

Op erations/cycle 0.32 0.32 0.29 0.27

BB SCHEDULED

Cycle coun t 61017751 32888917 16023927 9109674

Register reads 25441900 18803400 11962800 6027600

Register writes 16704300 10486000 8273490 4422240

Op erations/cycle 0.40 0.73 0.74 1.03

T able 6.4: JPEG deco ding b enc hmark results.

T remor. This test case deco des a 40kB Ogg V orbis �le and is quite a lot larger

case than the previous ones when it comes to total cycle coun t. The b enc hmark

results of this case are presen ted in T able 6.5

Summary of results. The results sho w that the used target arc hitecture do es

ha v e an e�ect on the pro duced sc hedule. Duplicating pro cessor resources generally

reduced the n um b er of cycles required to execute the program. When using the

sequen tial sc heduling algorithm, the most notable c hange in the cycle coun t w as

ac hiev ed b y adding registers. The 4-bus mac hine has double the n um b er of registers

compared to the restricted mac hine. This reduced the amoun t of additional spill

co de required for correct op eration, th us also reducing the total cycle coun t. Cases

that use a lot of registers, suc h as the JPEG-case, did furthermore b ene�t from the

extra registers in the h uge mac hine. The basic blo c k sc heduler w as able to parallelize

the spill co de on the m ulti-bus mac hines so that the e�ect of adding registers w as

not so clearly visible.

6. Instruction Sc heduling Algorithm Implemen tations and V eri�cation 49

SEQUENTIAL Minimal Restricted 4-bus Huge

Cycle coun t 1928470768 1928470768 1087130275 823249470

Register reads 799720000 799720000 452490000 351344000

Register writes 564574000 564574000 318757000 240659000

Op erations/cycle 0.31 0.31 0.28 0.26

BB SCHEDULED

Cycle coun t 1529302891 838487211 425143835 214394914

Register reads 631424000 479453000 331498000 160835000

Register writes 404367000 263318000 224326000 122223000

Op erations/cycle 0.40 0.72 0.72 1.01

T able 6.5: T remor b enc hmark results.

A dditional resources also had an e�ect on the n um b er of register reads and writes.

Reduced spilling resulted in less total register accesses in the sequen tially sc heduled

co de. The n um b er of register accesses in the basic blo c k sc heduled co de w as also

reduced when mo ving from minimal to h uge con�guration. The basic blo c k sc hed-

uler w as able to b ypass registers more e�ectiv ely when there w ere less hardw are

constrain ts to cop e with.

In some cases, the basic blo c k sc heduler pro duces more register writes than reads.

This do es not mean that some v alues are written to registers and nev er read, but

b ecause guard writes could not b e di�eren tiated from regular register writes in the

sim ulator output data, the statistics b ecome somewhat biased. Guard reads are not

included in register read statistics.

Since the amoun t of a v ailable ILP in the scop e of single basic blo c ks is limited, the

results w ere not outstanding. A lot b etter sc heduling results should b e ac hiev ed b y

in tro ducing a global sc heduling algorithm and using additional optimization passes

in the bac k-end as w ell as in earlier phases of compilation. A detailed p erformance

analysis of the used sc heduling algorithms and optimization passes is out of the

scop e of this do cumen t.

50

7. CONCLUSIONS

This thesis presen ted a soft w are framew ork that implemen ts a crucial part of co de

generation for TT A pro cessors: instruction sc heduling. The framew ork is a part

of the compiler bac k-end in a TT A-based co-design en vironmen t. In addition to

instruction sc heduling, an y arc hitecture-dep enden t co de transformations can b e ap-

plied on the source program using the framew ork. It ma y b e used as a stand-alone

to ol or as part of another application.

As inputs, the framew ork tak es the unsc heduled source application translated to

generic b yteco de b y the compiler fron t-end and a description of the target arc hi-

tecture. F ollo wing the user-de�ned co de transformation and sc heduling c hain, the

sc heduler optimizes and compiles the source program to a form executable on the

giv en target arc hitecture.

The main requiremen ts set for the framew ork w ere easy con�gurabilit y and �ex-

ibilit y . The requiremen ts w ere met b y designing an ob ject-orien ted and mo dular

arc hitecture for eac h part of the framew ork, in addition to a plug-in in terface that

allo ws the user to write and setup sc heduler passes without recompiling the whole

framew ork. This helps users in exp erimen ting with di�eren t optimizations and pa-

rameters and in ev aluating their e�ect on target application p erformance. The user

is also able to plug-in and try out di�eren t sc heduling algorithms easily in attempt

of �nding the most e�ectiv e sc hedule for the giv en target arc hitecture. In addition,

researc hers ma y tak e the �exibilit y p oin ts of the framew ork in use when dev eloping

new instruction sc heduling algorithms and co de optimization tec hniques.

The framew ork w as v eri�ed and put to test b y writing t w o �pro of-of-concept�

algorithms according to the pro vided in terfaces and running a set of real-life b enc h-

marks with them using the TCE testb enc h suite. This pro cess as a whole co v ered

most of the framew ork use cases and w as therefore considered a thorough v eri�cation

of the framew ork concept and functionalit y .

All the b enc hmarks could b e compiled for the target arc hitectures using the �rst

written algorithm that merely mapp ed the source program on the target without

applying an y optimizations or parallelization. The TCE sim ulator w as used to v erify

the correctness of the sc hedule b y comparing the pro duced output to the exp ected

correct output. The sim ulator w as also used to gather p erformance statistics whic h

illustrated the e�ect di�eren t sc heduling parameters had on the pro duced sc hedule.

7. Conclusions 51

After the sequen tial b enc hmarks w ere done, the test cases w ere sc heduled using a

more adv anced algorithm: the basic blo c k sc heduler.

The results sho w ed that the target arc hitecture had an e�ect on the pro duced

sc hedule: the more duplicated resources, the less time it to ok for the compiled co de

to execute. As exp ected, the used sc heduling algorithm also a�ected the sc hedule.

The basic blo c k sc heduler could exploit a v ailable ILP in the target arc hitectures as

w ell as in the source program, th us pro ducing lo w er cycle coun ts than the sequen tial

sc heduling algorithm. Better results are p ossible b y in tro ducing a global sc heduling

algorithm and more adv anced co de optimizations. Ho w ev er, writing the algorithms

and utilizing them in the b enc hmarks pro v ed that the framew ork meets the require-

men ts and lea v es space for future extensions and impro v emen t. Implemen ting these

should b e easy b ecause of the mo dular and �exible soft w are arc hitecture.

52

BIBLIOGRAPHY

[1] J. A. Fisher and B. R. Rau, �Instruction-lev el parallel pro cessing,� pp. 41�49,

1995.

[2] H. Corp oraal, Micr opr o c essor A r chite ctur es: fr om VLIW to TT A . Chic hester,

UK: John Wiley & Sons, 1997.

[3] P . Jääsk eläinen, � Instruction Set Sim ulator for T ransp ort T riggered Arc hitec-

tures,� Master's thesis, Departmen t of Information T ec hnology , T amp ere Uni-

v ersit y of T ec hnology , T amp ere, Finland, P .O.Bo x 553, FIN-33101 T amp ere,

Finland, Sep 2005, Se e http://tce.cs.tut.fi/ .

[4] H. Corp oraal and J. Ho ogerbrugge, �Co de generation for T ransp ort T riggered

Arc hitectures,� in Co de Gener ation for Emb e dde d Pr o c essors . Heidelb erg, Ger-

man y: Springer-V erlag, 1995, pp. 240�259.

[5] J. Janssen, �Compiler strategies for transp ort triggered arc hitectures,� Ph.D.

dissertation, Delft Univ ersit y of T ec hnology , The Netherlands, 2001.

[6] F ree Soft w are F oundation, �Gcc, the gn u compiler collection,�

h ttp://gcc.gn u.org. [Online]. A v ailable: h ttp://gcc.gn u.org

[7] C. Lattner and V. A dv e, � LL VM: A compilation framew ork for lifelong pro-

gram analysis & transformation,� in Pr o c. Int. Symp. Co de Gener ation and

Optimization , P alo Alto, CA, Marc h 20�24 2004, p. 75.

[8] P . Jääsk eläinen, V. Guzma, A. Cilio, and J. T ak ala, �Co design to olset for

application-sp eci�c instruction-set pro cessors,� in Pr o c. Multime dia on Mobile

Devic es 2007 , 2007, pp. 65 070X�1 � 65 070X�11.

[9] L. Laasonen, � Program Image and Pro cessor Generator for T ransp ort T rig-

gered Arc hitectures,� Master's thesis, Departmen t of Information T ec hnology ,

T amp ere Univ ersit y of T ec hnology , T amp ere, Finland, P .O.Bo x 553, FIN-33101

T amp ere, Finland, Apr 2007, Se e http://tce.cs.tut.fi/ .

[10] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, T e chniques, and

T o ols . A ddison-W esley Longman Publishing Co., Inc., 1986.

[11] J. A. Fisher, P . F arab osc hi, and C. Y oung, Emb e dde d Computing: A VLIW

Appr o ach to A r chite ctur e, Compilers and T o ols . Morgan Kaufmann, 2005.

[12] A. Cilio, H. J. M. Sc hot, and J. A. A. J. Janssen, � Arc hitecture De�nition

File: Pro cessor Arc hitecture De�nition File F ormat for a New TT A Design

BIBLIOGRAPHY 53

F ramew ork,� In ternal Pro ject Do cumen t, T amp ere Univ. of T ec h., T amp ere,

Finland, 2003-2006.

[13] P . F arab osc hi, J. A. Fisher, and C. Y oung, �Instruction sc heduling for instruc-

tion lev el parallel pro cessors,� in Pr o c e e dings of the IEEE , v ol. 89, no. 11. W ash-

ington, DC, USA: IEEE Computer So ciet y , 2001, pp. 1638�1659.

[14] D. A. P atterson and J. L. Hennessy , Computer Or ganization and Design: The

Har dwar e/Softwar e Interfac e . San F rancisco, US: Morgan Kaufmann, 1998.

[15] S. S. Muc hnic k, A dvanc e d Compiler Design and Implementation . Morgan

Kaufmann, 1997.

[16] J. L. Hennessy and D. A. P atterson, Computer A r chite ctur e: A Quantitative

Appr o ach, 3r d e dition . San F rancisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2003.

[17] T. L. A dam, K. M. Chandy , and J. R. Dic kson, �A comparison of list sc hedules

for parallel pro cessing systems,� Commun. A CM , v ol. 17, no. 12, pp. 685�690,

1974.

[18] A. Cilio, A. Metsähalme, and V. Guzma, � TT A Instruction Sc heduler F unc-

tional Requiremen ts,� In ternal Pro ject Do cumen t, T amp ere Univ. of T ec h.,

T amp ere, Finland, 2004-2006.

[19] A. Cilio and A. Metsähalme, � Program Ob ject Mo del,� In ternal Pro ject Do cu-

men t, T amp ere Univ. of T ec h., T amp ere, Finland, 2004-2006.

[20] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Bo ost Gr aph Libr ary: User Guide

and R efer enc e Manual . A ddison W esley , 2001.

[21] A. Cilio, A. Metsähalme, and V. Guzma, � TT A Instruction Sc heduler Design

Notes,� In ternal Pro ject Do cumen t, T amp ere Univ. of T ec h., T amp ere, Finland,

2005-2007.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns . A ddison-

W esley , 1995.

[23] V. Ziv o jno vi¢, J. M. V elarde, C. Sc hläger, and H. Meyr, � DSPSTONE : A DSP-

orien ted b enc hmarking metho dology ,� in Pr o c e e dings of the International Con-

fer enc e on Signal Pr o c essing and T e chnolo gy(ICSP A T'94) , Dallas, TX, 1994,

pp. 715�720.

