
1

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

TCE tutorial:
From C to VHDL as quickly as possible

This tutorial shows how you can quickly turn your C code
into parallel code and a VHDL-model of a processor using
the TCE toolset

The basic idea is that you compile the C code, pass the
sequential code to the design space explorer tool and let it
generate a processor design capable of running the
program for you

This tutorial has been tested with rev 3451 of TCE

2

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Initial setup

Download and unpack the tutorial file package
 wget http://tce.cs.tut.fi/tutorial_files/explorer_c2vhdl.tar.gz
 tar -xvvzf explorer_c2vhdl.tar.gz
 cd c2vhdl

There is an application directory which contains an example
C source code, the “complex multiply” benchmark from
DSPstone

3

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Compile the sources

First compile the C sources of the programs into generic sequential
TTA programs using the TCE frontend compiler

Note that the compiler output file must be named 'sequential_program'
 gcc-tce -O2 -o application1/sequential_program application1/complex_multiply.c

4

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

InitialMachineExplorer:
Generating a Processor for the Program

First we use “initial machine explorer” to create an initial processor design
capable of running the input program
 explore -e InitialMachineExplorer -a application1/ -p build_idf=true ExplorerResults.dsdb

• -e <plugin> specifies the plugin to be used in exploring
• -a <dir> specifies an application searchpath to be added to the ExplorerResults database
• -p option passes the parameter to the plugin - in this case the initial machine explorer plugin is

instructed to also generate an implementation description of the processor design (not only an
architecture description) so we can generate a VHDL implementation for it

• Last parameter is the design space data base (DSDB) to store the explored processor
configurations (architecture and implementation description file pairs) for later use

After running for a while, explorer should create a processor configuration
to the DSDB with ID 1
 This part of TCE is quite unoptimized so it can take several minutes to finish
 To save time, ready-made results are included in 'ExplorerResultsPre.dsdb' which you

can use instead of waiting to produce a new DSDB
 The first configuration includes all the necessary resources but it is fully connected

5

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

SimpleICOptimizer:
Optimizing Connectivity of the Processor

Optimize the initial configuration using “simple IC optimizer”
which removes unused connections from the processor
 This phase can be skipped in case a fully connected machine is

acceptable
 explore -e SimpleICOptimizer -s 1 ExplorerResults.dsdb

• -s <conf_ID> option defines the processor configuration to be optimized

A new processor configuration with a reduced connectivity
processor architecture has been added to the database
 Again, to save time, the resulting DSDB of this phase has been

pregenerated to ExplorerResultsPre2.dsdb

6

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Inspecting the Results

You can export the processor configurations from the database
with:
 explore -w <conf_ID> <database_file>

It will generate <ID>.adf and <ID>.idf files
 ADF is the architecture description, and IDF describes which

implementations to use for each architectural component
 explore -w 1 ExplorerResults.dsdb # the configuration before connectivity

reduction

 explore -w 2 ExplorerResults.dsdb # the configuration after unused connectivity
was removed

You can check how the architectures look like by running the
Processor Designer GUI:
 prode 1.adf & prode 2.adf &

7

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

...Inspecting the Results

If you want to get a (rough) estimate of the die area and the longest path
delay of the processors you can run the Cost Estimator:
 estimate 1.adf 1.idf
 estimate 2.adf 2.idf
 Again, this can take several minutes with the current unoptimized TCE code, so here is

the output from the commands:










 The longest path delay is 15 ns for both, which equals to about 67 MHz maximum clock
rate

• The longest path was not at IC, thus reducing IC didn't improve the speed
• Area was reduced by 8.5% with the IC reduction

estimate 1.adf 1.idf
total area: 13324 gates
delay of the longest path: 15 ns

estimate 2.adf 2.idf
total area: 12181 gates
delay of the longest path: 15 ns

8

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Generating Code for the Processor

Compile the sequential program for the generated architecture:
 schedule -t 2.adf -o application1/parallel_program.tpef application1/sequential_program

Then generate encoding (a binary encoding map file, BEM) for the
instructions:
 (A bug workaround: add a read connection to 'boolean' RF with 'prode 2.adf&' before

the next step! TODO: Remove this step from the tutorial after the bug has been fixed.)
 createbem 2.adf

• This creates 2.bem

Generate bit image of the instruction memory:
 cd application1
 generatebits -b ../2.bem -d -t parallel_program.tpef ../2.adf

This creates parallel_program.img and parallel_AS2.img into the
application directory:
 Contents of the program memory and the AS2 data address space, respectively in

zeros and ones ascii format

9

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Inspecting instruction encoding

You can examine the processor instruction encoding using
BEM viewer:
 viewbem 2.bem | less
 BEM viewer outputs its results to terminal so it is useful to pipe the

command with less or more

The most interesting number is the total instruction width
 If you exported the non-optimized configuration from the database and

created BEM for it, you can see that reducing connections decreases
instruction width

Under the total instruction width is shown what instruction
consists of

There is also a more detailed explanation for each move slot

10

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Generate the processor implementation

Generate the processor VHDL implementation using
Processor Generator:
 generateprocessor -b 2.bem -i 2.idf 2.adf

Creates folder 'proge-output' which includes the VHDL files
of the processor
 Generating a test bench for the processor automatically is not yet

supported, but will be in the future
 Test bench will provide the memory components, initialization code,

and clock generation code for testing the TTA code in a VHDL
simulator easily

The processor implementation is now ready to be simulated
in a VHDL simulator (if you provide a test bench!) and
synthesized

