TCE tutorial:

From C to VHDL as quickly as possible

»This tutorial shows how you can quickly turn your C code
into parallel code and a VHDL-model of a processor using
the TCE toolset

»The basic idea is that you compile the C code, pass the
sequential code to the design space explorer tool and let it
generate a processor design capable of running the
program for you

» This tutorial has been tested with rev 3451 of TCE

58 e e s
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Initial setup

»Download and unpack the tutorial file package
= wget http://tce.cs.tut.fi/tutorial_files/explorer _c2vhdl.tar.gz

» tar -xvvzf explorer_c2vhdl.tar.gz
= cd c2vhdl

»There is an application directory which contains an example
C source code, the “complex multiply” benchmark from
DSPstone

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Compile the sources

»First compile the C sources of the programs into generic sequential
TTA programs using the TCE frontend compiler

»Note that the compiler output file must be named 'sequential_program'
= gcc-tce -O2 -0 application1/sequential _program application1/complex_multiply.c

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



InitialMachineExplorer:

Generating a Processor for the Program

»>First we use “initial machine explorer” to create an initial processor design
capable of running the input program
= explore -e InitialMachineExplorer -a application1/ -p build_idf=true ExplorerResults.dsdb
» -e <plugin> specifies the plugin to be used in exploring
» -a <dir> specifies an application searchpath to be added to the ExplorerResults database

* -p option passes the parameter to the plugin - in this case the initial machine explorer plugin is
instructed to also generate an implementation description of the processor design (not only an
architecture description) so we can generate a VHDL implementation for it

» Last parameter is the design space data base (DSDB) to store the explored processor
configurations (architecture and implementation description file pairs) for later use

» After running for a while, explorer should create a processor configuration
to the DSDB with ID 1
* This part of TCE is quite unoptimized so it can take several minutes to finish

* To save time, ready-made results are included in 'ExplorerResultsPre.dsdb' which you
can use instead of waiting to produce a new DSDB

* The first configuration includes all the necessary resources but it is fully connected

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



SimplelCOptimizer:

Optimizing Connectivity of the Processor

» Optimize the initial configuration using “simple IC optimizer”
which removes unused connections from the processor

* This phase can be skipped in case a fully connected machine is
acceptable

= explore -e SimplelCOptimizer -s 1 ExplorerResults.dsdb
« -s <conf_ID> option defines the processor configuration to be optimized
» A new processor configuration with a reduced connectivity
processor architecture has been added to the database

» Again, to save time, the resulting DSDB of this phase has been
pregenerated to ExplorerResultsPre2.dsdb

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Inspecting the Results

»>You can export the processor configurations from the database
with:
= explore -w <conf ID> <database file>

> It will generate <ID>.adf and <ID>.idf files

= ADF is the architecture description, and IDF describes which
implementations to use for each architectural component

= explore -w 1 ExplorerResults.dsdb # the configuration before connectivity
reduction

= explore -w 2 ExplorerResults.dsdb # the configuration after unused connectivity
was removed

»>You can check how the architectures look like by running the
Processor Designer GUI:

» prode 1.adf & prode 2.adf &

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



...Inspecting the Results

> If you want to get a (rough) estimate of the die area and the longest path
delay of the processors you can run the Cost Estimator:

= estimate 1.adf 1.idf

" estimate 2.adf 2.idf
= Again, this can take several minutes with the current unoptimized TCE code, so here is

the output from the commands:
estimate 1.adf 1.idf

total area: 13324 gates
delay of the longest path: 15 ns

estimate 2.adf 2.idf

total area: 12181 gates

delay of the longest path: 15 ns
* The longest path delay is 15 ns for both, which equals to about 67 MHz maximum clock

rate
» The longest path was not at IC, thus reducing IC didn't improve the speed

» Area was reduced by 8.5% with the IC reduction

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Generating Code for the Processor

»Compile the sequential program for the generated architecture:
» schedule -t 2.adf -o application1/parallel_program.tpef application1/sequential _program

»Then generate encoding (a binary encoding map file, BEM) for the
instructions:

= (A bug workaround: add a read connection to 'boolean' RF with 'prode 2.adf&' before
the next step! TODO: Remove this step from the tutorial after the bug has been fixed.)

" createbem 2.adf
» This creates 2.bem
» Generate bit image of the instruction memory:
= cd application1
* generatebits -b ../2.bem -d -t parallel_program.tpef ../2.adf

»This creates parallel_program.img and parallel _AS2.img into the
application directory:

= Contents of the program memory and the AS2 data address space, respectively in
zeros and ones ascii format

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Inspecting instruction encoding

»>You can examine the processor instruction encoding using
BEM viewer:
" viewbem 2.bem | less

= BEM viewer outputs its results to terminal so it is useful to pipe the
command with /ess or more

»The most interesting number is the total instruction width

* |f you exported the non-optimized configuration from the database and
created BEM for it, you can see that reducing connections decreases
instruction width

»Under the total instruction width is shown what instruction
consists of

»There is also a more detailed explanation for each move slot

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



Generate the processor implementation

» Generate the processor VHDL implementation using
Processor Generator:
= generateprocessor -b 2.bem -i 2.idf 2.adf

» Creates folder 'proge-output' which includes the VHDL files
of the processor

» Generating a test bench for the processor automatically is not yet
supported, but will be in the future

* Test bench will provide the memory components, initialization code,
and clock generation code for testing the TTA code in a VHDL
simulator easily

»The processor implementation is now ready to be simulated
in a VHDL simulator (if you provide a test bench!) and
synthesized

a TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Digital and Computer Systems Tutorial: From C to VHDL as Quickly as Possible 17.08.07



