
1

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

TCE tutorial:
From C to VHDL as quickly as possible

This tutorial shows how you can quickly turn your C code
into parallel code and a VHDL-model of a processor using
the TCE toolset

The basic idea is that you compile the C code, pass the
sequential code to the design space explorer tool and let it
generate a processor design capable of running the
program for you

This tutorial has been tested with rev 3451 of TCE

2

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Initial setup

Download and unpack the tutorial file package
 wget http://tce.cs.tut.fi/tutorial_files/explorer_c2vhdl.tar.gz
 tar -xvvzf explorer_c2vhdl.tar.gz
 cd c2vhdl

There is an application directory which contains an example
C source code, the “complex multiply” benchmark from
DSPstone

3

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Compile the sources

First compile the C sources of the programs into generic sequential
TTA programs using the TCE frontend compiler

Note that the compiler output file must be named 'sequential_program'
 gcc-tce -O2 -o application1/sequential_program application1/complex_multiply.c

4

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

InitialMachineExplorer:
Generating a Processor for the Program

First we use “initial machine explorer” to create an initial processor design
capable of running the input program
 explore -e InitialMachineExplorer -a application1/ -p build_idf=true ExplorerResults.dsdb

• -e <plugin> specifies the plugin to be used in exploring
• -a <dir> specifies an application searchpath to be added to the ExplorerResults database
• -p option passes the parameter to the plugin - in this case the initial machine explorer plugin is

instructed to also generate an implementation description of the processor design (not only an
architecture description) so we can generate a VHDL implementation for it

• Last parameter is the design space data base (DSDB) to store the explored processor
configurations (architecture and implementation description file pairs) for later use

After running for a while, explorer should create a processor configuration
to the DSDB with ID 1
 This part of TCE is quite unoptimized so it can take several minutes to finish
 To save time, ready-made results are included in 'ExplorerResultsPre.dsdb' which you

can use instead of waiting to produce a new DSDB
 The first configuration includes all the necessary resources but it is fully connected

5

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

SimpleICOptimizer:
Optimizing Connectivity of the Processor

Optimize the initial configuration using “simple IC optimizer”
which removes unused connections from the processor
 This phase can be skipped in case a fully connected machine is

acceptable
 explore -e SimpleICOptimizer -s 1 ExplorerResults.dsdb

• -s <conf_ID> option defines the processor configuration to be optimized

A new processor configuration with a reduced connectivity
processor architecture has been added to the database
 Again, to save time, the resulting DSDB of this phase has been

pregenerated to ExplorerResultsPre2.dsdb

6

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Inspecting the Results

You can export the processor configurations from the database
with:
 explore -w <conf_ID> <database_file>

It will generate <ID>.adf and <ID>.idf files
 ADF is the architecture description, and IDF describes which

implementations to use for each architectural component
 explore -w 1 ExplorerResults.dsdb # the configuration before connectivity

reduction

 explore -w 2 ExplorerResults.dsdb # the configuration after unused connectivity
was removed

You can check how the architectures look like by running the
Processor Designer GUI:
 prode 1.adf & prode 2.adf &

7

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

...Inspecting the Results

If you want to get a (rough) estimate of the die area and the longest path
delay of the processors you can run the Cost Estimator:
 estimate 1.adf 1.idf
 estimate 2.adf 2.idf
 Again, this can take several minutes with the current unoptimized TCE code, so here is

the output from the commands:

 The longest path delay is 15 ns for both, which equals to about 67 MHz maximum clock
rate

• The longest path was not at IC, thus reducing IC didn't improve the speed
• Area was reduced by 8.5% with the IC reduction

estimate 1.adf 1.idf
total area: 13324 gates
delay of the longest path: 15 ns

estimate 2.adf 2.idf
total area: 12181 gates
delay of the longest path: 15 ns

8

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Generating Code for the Processor

Compile the sequential program for the generated architecture:
 schedule -t 2.adf -o application1/parallel_program.tpef application1/sequential_program

Then generate encoding (a binary encoding map file, BEM) for the
instructions:
 (A bug workaround: add a read connection to 'boolean' RF with 'prode 2.adf&' before

the next step! TODO: Remove this step from the tutorial after the bug has been fixed.)
 createbem 2.adf

• This creates 2.bem

Generate bit image of the instruction memory:
 cd application1
 generatebits -b ../2.bem -d -t parallel_program.tpef ../2.adf

This creates parallel_program.img and parallel_AS2.img into the
application directory:
 Contents of the program memory and the AS2 data address space, respectively in

zeros and ones ascii format

9

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Inspecting instruction encoding

You can examine the processor instruction encoding using
BEM viewer:
 viewbem 2.bem | less
 BEM viewer outputs its results to terminal so it is useful to pipe the

command with less or more

The most interesting number is the total instruction width
 If you exported the non-optimized configuration from the database and

created BEM for it, you can see that reducing connections decreases
instruction width

Under the total instruction width is shown what instruction
consists of

There is also a more detailed explanation for each move slot

10

Tutorial: From C to VHDL as Quickly as Possible 17.08.07Institute of Digital and Computer Systems

Generate the processor implementation

Generate the processor VHDL implementation using
Processor Generator:
 generateprocessor -b 2.bem -i 2.idf 2.adf

Creates folder 'proge-output' which includes the VHDL files
of the processor
 Generating a test bench for the processor automatically is not yet

supported, but will be in the future
 Test bench will provide the memory components, initialization code,

and clock generation code for testing the TTA code in a VHDL
simulator easily

The processor implementation is now ready to be simulated
in a VHDL simulator (if you provide a test bench!) and
synthesized

