
On Efficiency of Transport Triggered Architectures
in DSP Applications

JARI HEIKKINEN1, JARMO TAKALA1, ANDREA CILIO2, and HENK CORPORAAL3

1Tampere University of Technology, P.O.B. 553, 33101 Tampere, FINLAND
2Delft University of Technology, Mekelweg 4, 2628 CD Delft, THE NETHERLANDS

3IMEC, Kapeldreef 75, B-3001 Leuven, BELGIUM
jari.heikkinen@tut.fi

Abstract: - The trend in programmable architectures for digital signal processing (DSP) is to move towards
high-level language programming, which sets high requirements for compilers to efficiently exploit the instruction
level parallelism in modern processors. In this paper, efficiency of transport triggered architectures (TTA) in DSP
applications is discussed. The efficiency of a high-level compiler on a TTA is compared to commercial very long
instruction word DSP architecture. The effect of different coding styles in high-level language code is evaluated
with a DSP benchmark, fast Fourier transform.

Key-Words: - transport triggered architecture, customizable processor architecture, digital signal processing, fast
fourier transform, coding style, performance evaluation

1 Introduction

The current trend in programmable architectures in the
field of digital signal processing (DSP) is to move to-
wards high-level language (HLL) programming and
customizable architectures [1]. The reason behind this
is the gap between the productivity of designers and
increased complexity of DSP applications. In order to
improve the productivity even further, several design
methodologies suggest tool assisted HLL code gener-
ation. Since the coding style of generated HLL may
vary from tool to tool, insensitivity to coding style vari-
ations is a good property in HLL compilers used to
generate the machine code for the target architecture.

Due to the real-time requirements of DSP applica-
tions, the performance of DSP processors is improved
by exploiting the instruction-level parallelism. Cur-
rently very long instruction word (VLIW) architec-
tures have gained popularity in DSP applications. In
general, the VLIW architectures are intended to be
programmed with HLLs, thus they lend themselves to
programmable DSP processor trends.

VLIW architectures are modular; the number of
function units (FU) can be increased. There are
even VLIW architectures, which support customized,
application-specific function units. In VLIW, this
may, however, restrict the flexibility, e.g., in Trime-
dia [2], support for multi-operand instructions, i.e.,
multi-operand FU, reserves several instruction fields
from the VLIW instruction. VLIW architectures have

been criticized for their requirements for read/write
ports in the register file [3] and, in order to allevi-
ate this problem, clustered approach has been sugges-
ted, i.e., the register file is partitioned as illustrated in
Fig. 1. In addition, the complexity of the bypassing
network and the register file is high, since the by-
passing network must support bypassing of operands
from all FU outputs to their inputs.

An alternative architecture where the drawbacks
of VLIW architecture can be avoided is transport
triggered architecture (TTA) [4]. In TTA, a pro-
gram describes only the operand transfers between the
computational resources in the architecture. Such a
mirrored programming paradigm allows new schedul-
ing and allocation techniques to be employed in HLL
compilers. TTA concept supports heterogeneous, even
multi-operand FUs without restrictions. Thus, TTA is
a promising concept for embedded DSP applications
where customization is desired.

In this paper, performance of TTA and VLIW archi-
tectures is compared in a DSP application, namely fast
Fourier transform (FFT). The application is described
with C language and HLL compilers are used to gen-
erate parallel code for the architectures. Performance
and efficiency is measured in terms of clock cycles and
code density. Furthermore, the effect of different HLL
coding styles have been analysed in order to estimate
the performance in cases where tool assisted HLL code
generation is used.



Memory

FU FU FU FU

Register File A

FU FU FU FU

Register File B

Fig. 1: Principal block diagram of clustered VLIW.
FU: Function unit.

2 Transport Triggered Architecture

The bypass complexity can be reduced by making the
bypass registers visible at architectural level. This way
the spilling of bypass values into register file (RF) is
made under program control. The bypass complex-
ity can also be reduced by reducing the number of
read and write connections and by reducing the num-
ber of bypass buses. This implies that besides the op-
erations also the operand transfers (transports) need to
be scheduled at compile-time as is done in the case
of RFs. Thus, the bypass transports become visible
at the architectural level. This implies that opera-
tions can be hidden. In this model, the data transports
trigger the FU operations implicitly. Thus, the pro-
gramming paradigm reminds data flow machines. In
principle, the traditional operation triggered program-
ming paradigm is mirrored, hence the name transport
triggered architecture [4]. In the TTA programming
model, program specifies only the data transports to be
performed by the interconnection network. Therefore,
only one type of operation is supported: move oper-
ation, which performs a data transport from source to
destination. The number of move operations per in-
struction is equal to the number of simultaneous trans-
ports supported by the interconnection network.

A TTA processor consists of a set of functional units
and register files containing general-purpose registers.
These units are connected by interconnection network
consisting of buses as illustrated in Fig. 2. Connec-
tions to buses are established through input and output
sockets. An input socket contains multiplexers feed-
ing operands from the buses into the FUs. An output
socket contains de-multiplexers placing the FU results
into the correct bus. The number of FUs and RFs nor
the input and output connections of FUs and RFs are
limited. The TTA concept provides flexibility in form
of modularity; functional units with standard interface
are used as basic building blocks. Therefore, the ar-
chitecture can be tailored with special function units

FU

FU

RFFU RF FU

FU LSUFU Memory

Fig. 2: Principal block diagram of TTA. FU: Function
unit. RF: Register file. LSU: Load-store unit. Dots
represent socket connections.

without need to change the transport capacity.
MOVE framework is a design environment contain-

ing a set of software tools for designing application-
specific instruction set processors that utilize the TTA
paradigm [5]. MOVE framework provides semi-
automatic design process that shortens the design-
time. The design flow in MOVE framework consists
of three principal components as illustrated in Fig. 3.
The design space explorer searches the design space
for a processor configuration, which yields the best
cost/performance ratio for a given application. The
hardware subsystem generates structural hardware de-
scription of the selected processor configuration and
produces statistics of timing, area, and power con-
sumption based on information in technology librar-
ies. The software subsystem generates instruction-
level parallel code for the selected processor config-
uration and provides statistics, e.g., on cycle count, in-
struction count, and hardware resource utilization.

The MOVE framework supports all the trends in
DSP processors mentioned previously: customization,
HLL programming, and instruction-level parallelism.
Designer can tailor and optimize the resources of the
programmable architecture and the HLL compiler ad-
apts to these modifications. This approach allows pro-
cessor core to be customized according to the require-
ments of the application in hand.

3 Benchmark Application

A popular benchmark application for programmable
DSP processors is fast Fourier transform (FFT). Here
an in-place FFT algorithm has been used as they are
often preferred in software implementations since at
each recursion the results can be stored into the same
memory locations as the input operands. The used
algorithm is the decimation-in-place radix-2 Cooley-
Tukey FFT [6] and an N-point algorithm, N = 2n, con-



Architecture
Description

Design
Space

Explorer

statisticsstatistics Hardware
Subsystem

Software
Subsystem

Parallel
Object Code

Processor
Layout

Application
in HLL

Technology Description
& Cell Library

Fig. 3: Principal design flow in MOVE framework.

taining n iterations of radix-2 FFT butterfly operations
can be defined as{

Xm(p) = Xm−1(p)+Xm−1(q)
Xm(q) = (Xm−1(p)−Xm−1(q))W �p mod 2m�

2m

q = p+2m−1; p = i+ k2m;

i = 0,1, . . . ,2m−1 −1; n = 0,1, . . . ,2n−m −1 (1)

where mod is the modulus operator and Xm(p) is the
pth complex-valued operand at iteration m, 0 < m ≥
n. The operands X0(p) are the input sequence values
in bit-reversed order and Xn(p) are the final results in
order. W r

N is the complex-valued twiddle factor defined
as

W r
N = e− j2πr/N (2)

where j is the imaginary unit. Direct implementation
of the complex multiplication requires four real-valued
multiplications. However, by utilizing the periodicity
of sine and cosine functions, this can be realized with
three real-valued multiplications as described in [7].

The FFT algorithm was described in C language
using fractional data representation, i.e., fixed-point
representation where the number range is normalized.
Fractional representation is often used in DSP realiza-
tions and it represent also challenges for C compilers
due to the fact that ANSI C does not contain predefined
data type for fractional representation. Due to the in-
place structure of FFT, three nested loops had to be
used in the code.

The main objective was to investigate the effect of
different loop structures on the performance. Five dif-
ferent C codes of the FFT were programmed. The
first version, code A, was written without any atten-
tion to the coding style. The application code included
both FOR and WHILE loops with loop indices iterat-
ing downwards and upwards. Twiddle factors and data

elements in the input sequence were accessed with the
aid of pointers. In code B, only FOR loops were used
since, in general, compilers perform better with FOR
loops. In code C, the loop indices in all the loop struc-
tures, still FOR loops, were iterating downwards since
some compilers prefer iterations in decreasing order.
The nested loops of the original code were removed
in code D, since they may produce inefficient code in
some compilers. In addition, a special experiment was
made to investigate the use of pointers. In code E, data
elements in vectors are accessed with indexing and all
the pointers are removed.

4 TTA and VLIW Comparison

For the comparison of VLIW and TTA, the bench-
mark was compiled with C compiler for a commer-
cial clustered VLIW processor, Texas Instruments
TMS320C6203 [8]. This is realized with 0.15 µm
technology and the maximum clock frequency is 300
MHz [9]. For TTA, we used the development tools
from the MOVE framework. Unfortunately, there is no
TTA processor implemented with comparable techno-
logy as the VLIW processor. The technology libraries
for the TTA design space explorer are based on 0.7 µm
standard cell technology. The explorer estimates that
the maximum clock frequency for the TTA architec-
tures used in the evaluation are between 25-27 MHz.

Due to the technolgy difference, the evaluation is
done by comparing the number of clock cycles. TTA
designs are configured to contain the same number
of computational resources as in the used VLIW pro-
cessor; eight functional units from which two are mul-
tipliers and six ALUs. Furthermore, the TTA archi-
tecture was configured to contain 32 general-purpose
registers partitioned into two register files as in the ref-
erence VLIW.

The multipliers in the VLIW architecture have an
internal pipeline stage and, therefore, pipelined multi-
pliers are used also in TTA. In the VLIW architecture,
load from memory to a register takes four cycles. The
address computation is performed in an ALU, which
is used also for signal processing. This implies that
the ALU has different latencies depending on the op-
eration. Variable latency is not allowed in TTA, thus
direct modeling of load operation cannot be done. Due
to this, a separata unit was added to perform load and
store operations.

The performance statistics of VLIW were measured
using the instruction set simulator incorporated into
the development tools of the VLIW processor. The
statistics for TTA processor were obtained from the



0

3000

6000

9000

12000

15000

Opt. TTA

VLIW

TTA

Code ECode DCode CCode BCode A

C
lo

ck
 c

yc
le

s

Fig. 4: Cycle count comparison of TTA and VLIW
compilers.

parallel simulator of the MOVE framework invoked in
the scheduling phase of the compilation. The num-
ber of clock cycles elapsed in the FFT application with
different coding styles in VLIW and TTA is shown in
Fig. 4. Different coding styles do not have a major
effect on the number of clock cycles in either architec-
ture. For TTA, the maximun difference in the number
of clock cycles is 7 percents whereas for VLIW it is
14 percents. The best cycle count for TTA is obtained
when all the loops are configured to iterate downwards
(code C) whereas VLIW compiler performs best for
code containing few or no nested loops (code D).

VLIW processor requires at least twice as many
clock cycles to perform the FFT application than TTA.
The reason behind this is that the initial application
was written without much concern on the coding style
thus resembling more general-purpose code than di-
gital signal processing code. Since the compiler of
TTA is tuned for general-purpose processing, it was
able to compile the application better than the VLIW
compiler tuned for digital signal processing. By writ-
ing the application carefully, the compiler of VLIW
could utilize software pipelining and other advanced
code compilation techniques thus resulting in compar-
able or even better performance, since the compiler of
TTA does not yet support these techniques. However,
if the objective is to move towards automated code
generation, TTA seems to be a good solution, since
it can detect the parallelism from even a poorly written
code.

In embedded DSP systems, the code density is an
important aspect. The effect of coding styles to the
resulting code size is illustrated in Fig. 5. Effect-
ive code sizes, where NOP-instructions have been re-
moved, are also shown in the figure. The largest dif-
ference in code size in TTA is approximately 21%

0

500

1000

1500

2000

2500

3000

3500

Code E

Code D

Code C

Code B

Code A

Opt. TTA eff.
Opt. TTA

VLIW eff.
VLIW

TTA eff.
TTA

C
o

d
e 

si
ze

 (b
yt

es
)

Fig. 5: Code size comparison of TTA and VLIW.

whereas in VLIW it is approximately 32%. The smal-
lest code size in both architectures was obtained with
the code where iterations were performed downwards
(code C). The largest code size was obtained when nes-
ted loops were removed (codeD). The code sizes for
VLIW are about three times smaller than for TTA. This
is because the architecture generated by the MOVE
tools does not contain any instruction compression,
i.e., each parallel move operation is directly stored into
the instruction memory. Furthermore, the number of
NOP-instructions in TTA code is large thus increasing
the code size considerably as can be noted by com-
paring the total code size with the corresponding ef-
fective code size. In VLIW the increase to the code
size caused by NOP-instructions is fairly small. The
code density of TTA could improved by utilizing code
compression techniques such as entropy coding. These
methods can result in notable reduction in code size
since, in TTA, code compression can be made indi-
vidually for each application.

Finally, the design space explorer was used to find
an area-efficient architecture for each coding style
case. In all cases, the optimized architecture obtained
from the design space explorer contains one multiplier,
two ALUs and two register files with 16 registers each.
These architectures are referred to as optimized TTA in
Fig. 4 and 5. The cycle counts for the optimized TTA
design are in all cases smaller than for the fixed re-
sources TTA. This is due to the optimized resources
for each of the coding style cases. In addition, the
code sizes for the optimized TTA are smaller than in
the fixed resource TTA. This is due to the fact that the
less resources, the smaller the instruction word width.
Thus, it can be stated that the explorer works efficiently
in finding an optimized architecture configuration to
fullfill the constraints of the application.



5 Conclusions

In this paper, performance of transport triggered archi-
tecture has been compared to clustered VLIW in cases
where the DSP application is described with a high-
level language. It was noted that the TTA approach is
a good candidate future DSP implementations where
HLL compilation and customization according to ap-
plication are needed. It was noted that the bottleneck
of used TTA architecture is the code density and, there-
fore, further investigation is needed to improve this
property in TTA.

References:

[1] J. M. Rabaey, W. Gass, R. Brodersen, T. Nishitani,
and T. Chen, “VLSI design and implementation
fuels the signal-processing revolution,” IEEE Sig-
nal Processing Mag., vol. 15, no. 1, pp. 22–37,
Jan. 1998.

[2] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A.
Vissers, E. J. D. Pol, M. I. A. Tromp, P. Struik,
R. H. J. Bloks, P. van der Wolf, A. D. Pimentel,
and H. P. E. Vranken, “TriMedia CPU64 architec-
ture,” in Proc. IEEE Int. Conf. Computer Design,
Austin, TX, U.S.A., Oct. 10–13 1999, pp. 586–
592.

[3] R. P. Colwell, R. P. Nix, J. J. O’Connel, D. B.
Papworth, and P. K. Rodman, “A VLIW architec-
ture for a trace scheduling compiler,” IEEE Trans.
Comput., vol. 37, no. 8, pp. 967–679, Aug. 1988.

[4] H. Corporaal, Microprocessor Architectures:
From VLIW to TTA, John Wiley & Sons,
Chichester, UK, 1997.

[5] H. Corporaal and M. Arnold, “Using transport
triggered architectures for embedded processor
design,” Integrated Computer-Aided Engineering,
vol. 5, no. 1, pp. 19–38, 1998.

[6] A. V. Oppenheim and R. Schafer, Discrete-Time
Signal Processing, Prentice Hall, Inc., Englewood
Cliffs, NJ, U.S.A., 1989.

[7] A. Wenzler and E. Lüder, “New structures for
complex multipliers and their noise analysis,” in
Proc. IEEE Int. Symposium on Circuits and Sys-
tems, Seattle, WA, U.S.A., Apr. 30–May 3 1995,
vol. 2, pp. 1432–1435.

[8] N. Seshan, “High velociTI processing,” IEEE Sig-
nal Processing Mag., vol. 15, no. 2, pp. 86–101,
117, Mar. 1998.

[9] TMS320C6203 fixed-point digital signal pro-
cessor, data sheet, Texas Instruments Inc., Hou-
ston, TX, U.S.A., 2000.


